MUS420/EE367A Lecture 7A Woodwind Models

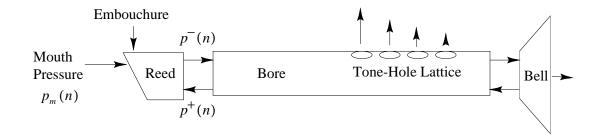
Julius O. Smith III (jos@ccrma.stanford.edu) Center for Computer Research in Music and Acoustics (CCRMA) Department of Music, Stanford University Stanford, California 94305

January 8, 2007

Outline

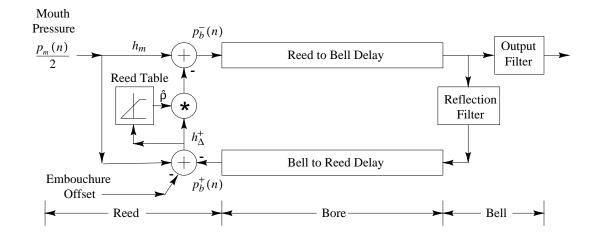
- Single-Reed Instruments
 - Schematic Physical Model
 - Digital Waveguide Model
- Bernoulli Effect
- Single-Reed Theory
- Single-Reed Computation Models

Schematic Model



- Main control variable = air pressure applied to reed
- Secondary control variable = reed embouchure
- Pressure waves = natural choice for simulation
- Bell \approx power-complementary "cross-over" filter:
 - Low frequencies reflect (inverted)
 - High frequencies transmit
 - Cross-over frequency \approx 1500 Hz for clarinet (where wavelength \approx bore diameter)
- \bullet Radiation \approx "Omni" at LF, more directional at HF

Single-Reed Digital Waveguide Model



- Bore = bidirectional delay line (losses lumped)
- Bore length = 1/4 wavelength in lowest register
 - Bell reflection \approx -1 at low frequencies
 - Mouthpiece reflection pprox +1
- Reflection filter depends on first few open toneholes
- In a simple implementation, the bore is "cut to a new length" for each pitch
- Reed = Nonlinear scattering junction
 - Reed mass neglected
 - Reed table interpolated (usually linear)
 - In software, simple "if statement" possible
 - Embouchure can be a simple address offset

Qualitative Description of Single-Reed Oscillation

- Apply pressure at the mouthpiece
- Reed is "biased" in "negative-resistance" region
- High-pressure front travels to open tonehole or bell where it reflects with a sign inversion
- A "canceling wave" travels back toward mouthpiece
- The canceling wave reflects from the mouthpiece with no inversion
- A negative-pressure "wake" is left behind
- The reflected-canceling-wave travels back to the open end where it reflects with inversion
- The negative-pressure throughout bore is canceled by this wave as it travels to the mouthpiece
- Upon reaching mouthpiece, one period is finished
- One period = four trips across bore length

Reed Causes Oscillation Growth

- Wave loses energy propagating in bore (mainly at the open-end reflection)
- The nonlinear reed action must restore this lost energy
- "Power supply" = "dc mouth pressure" ⇒ Reed converts dc to ac
- Reed action "sharpens" pressure transitions
 - $-\operatorname{Reed}$ closure increases reflection coefficient in bore
 - As pressure falls in bore, it is amplified by increasing ρ
 - As pressure falls in bore, it is further amplified by decreasing flow input from the mouth
 - As pressure rises in bore, it is amplified by increasing mouth flow input (although reflection coefficient decreases)
 - Reflection of a positive wave is boosted when the incoming wave is below a certain level and it is attenuated above that level
- When the oscillation reaches a very high amplitude, it is limited on the negative side by the shutting of the

reed, and on the positive side by the attenuation described above

In an ideal *inviscid*, *incompressible flow*, we have, by *conservation of energy*,

$$p + \frac{1}{2}\rho u^2 + \rho g h = \text{constant}$$

where

$$p = \text{ pressure (Newtons/m}^2 = \text{kg /(m s}^2))$$

- u = particle velocity (m/s)
- ho = volume density of air (kg/m³)
- g = Newton's gravitational constant (m/s²)
- h = Height of flow's center-of-mass axis (m)

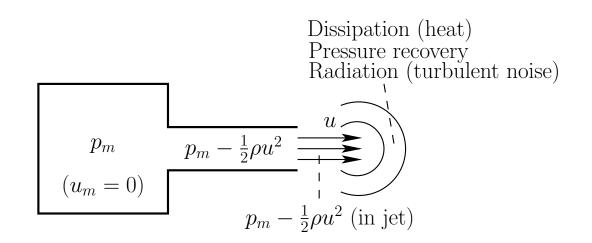
"Inviscid" = "Frictionless", "Lossless"

Pressure is Proportional to Kinetic Energy

$$p = \frac{1}{3}\rho \left\langle u^2 \right\rangle$$

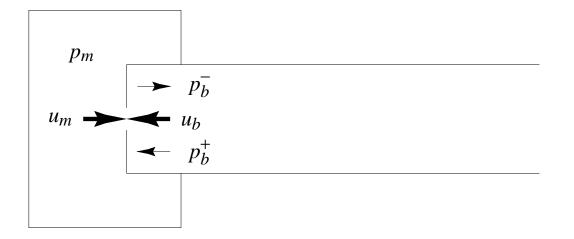
- Average momentum transfer / area / time
- Caused by collisions of gas molecules with boundary
- Proof: See Kinetic Theory of Gases

Bernoulli Effect



• $p_m =$ "mouth pressure"

- Flow inside "mouth" neglected
- Pressure kinetic energy converts to flow kinetic energy within channel
- Jet "carries its own pressure" until it dissipates
- Jet dissipation can go to
 - heat (now allowing "friction" into the model)
 - vortices (angular momentum)
 - radiation (sound waves)
 - pressure recovery: (flow kinetic energy \longrightarrow pressure kinetic energy)



 $\begin{array}{rcl} p_m \stackrel{\Delta}{=} & {\rm mouth \ pressure \ (constant)} \\ p_b \stackrel{\Delta}{=} & {\rm bore \ pressure \ (dynamic)} \\ p_\Delta \stackrel{\Delta}{=} & p_m - p_b \stackrel{\Delta}{=} {\rm pressure \ drop \ across \ mouthpiece} \\ u_m \stackrel{\Delta}{=} & {\rm resulting \ flow \ into \ mouthpiece} \\ R_m(p_\Delta) \stackrel{\Delta}{=} & {\rm reed-aperture \ impedance \ (measured)} \\ & & {\rm where} \\ u_b + u_m &= 0 \qquad ({\rm by \ continuity \ of \ volume \ velocity}) \\ u_m(p_\Delta) \stackrel{\Delta}{=} & \frac{p_\Delta}{R_m(p_\Delta)} \qquad ("{\rm Ohm's \ law" \ for \ the \ reed}) \\ u_b \stackrel{\Delta}{=} & u_b^+ + u_b^- = \frac{p_b^+ - p_b^-}{R_b}, \quad R_b \stackrel{\Delta}{=} {\rm bore \ impedance} \end{array}$

Toward a Computational Model

Given:

 $p_m =$ Mouth pressure $p_b^+ =$ Incoming traveling bore pressure

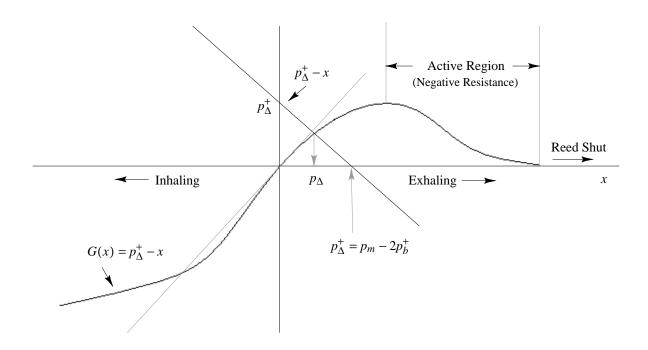
Find:

 $p_b^- = \text{Outgoing traveling bore pressure}$ such that:

$$0 = u_m + u_b = \frac{p_\Delta}{R_m(p_\Delta)} + \frac{p_b^+ - p_b^-}{R_b},$$
$$p_\Delta \stackrel{\Delta}{=} p_m - p_b = p_m - (p_b^+ + p_b^-)$$

Solving for p_b^- is not immediate because R_m depends on p_Δ which depends on p_b^- .

Graphical Solution Technique



Graphically solve:

$$G(p_{\Delta}) = p_{\Delta}^+ - p_{\Delta}, \qquad p_{\Delta}^+ \stackrel{\Delta}{=} p_m - 2p_b^+$$

where

$$G(p_{\Delta}) \stackrel{\Delta}{=} R_b u_m(p_{\Delta}) = R_b p_{\Delta} / R_m(p_{\Delta})$$

- Introduced by Friedlander and Keller (1953)
- Analogous to finding the "operating point" of a transistor by intersecting its "operating curve" with the "load line" determined by the load resistance.

• Outgoing wave is then
$$p_b^- = p_m - p_b^+ - p_\Delta(p_\Delta^+)$$

Scattering Formulation

Solve for \boldsymbol{p}_b^- to obtain

$$p_b^- = \frac{1-r}{1+r}p_b^+ + \frac{r}{1+r}p_m$$
$$= \rho p_b^+ + \frac{1-\rho}{2}p_m$$
$$= \frac{p_m}{2} - \rho \frac{p_\Delta^+}{2}$$

where

$$\begin{split} \rho(p_{\Delta}) &\stackrel{\Delta}{=} \frac{1 - r(p_{\Delta})}{1 + r(p_{\Delta})}, \qquad r(p_{\Delta}) \stackrel{\Delta}{=} \frac{R_b}{R_m(p_{\Delta})} \\ \rho(p_{\Delta}) &= \textit{signal-dependent reflection coefficient.} \end{split}$$

In practice, $R_m \gg R_b \Rightarrow r \approx 0, \rho \approx 1$ (mouthpiece looks largely like a closed end)

For Faster Real-Time Computation

Pre-solve the graphical intersection and store the result in a *look-up table*

Let h denote *half-pressure* p/2. Then

$$p_b^- = -\rho(p_\Delta) \cdot h_\Delta^+$$

Subtracting both sides from p_b^+ and solving for ρ gives

$$\rho(p_{\Delta}) = \frac{p_{\Delta}}{h_{\Delta}^+} - 1$$

Now, for each $h_{\Delta}^+ = -p_b^+$, find p_{Δ} graphically, and store the resulting reflection coefficient $\rho(p_{\Delta})$ as a function of h_{Δ}^+ :

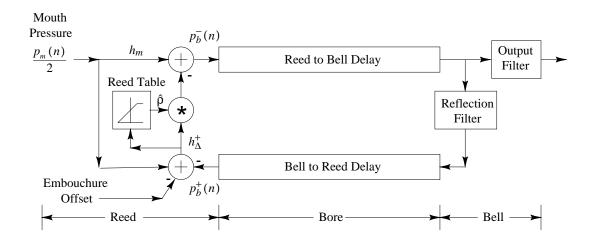
$$\hat{\rho}(h_{\Delta}^{+}) = \rho(p_{\Delta}(h_{\Delta}^{+}))$$

Then the real-time reed computation reduces simply to

$$p_b^- = -\hat{\rho}(h_\Delta^+) \cdot h_\Delta^+$$

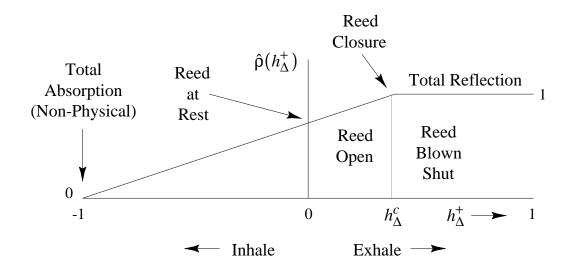
This is the form chosen for implementation above

Table-Reduced Reed Reflection Coefficient



- Control variable = mouth half-pressure
- $h_{\Delta}^{+}=-p_{b}^{+}$ computed from incoming bore pressure by a subtraction
- Table is indexed by h_{Δ}^+
- Result of lookup is multiplied by h_{Δ}^+
- Result of multiplication is subtracted from
- Total reed cost = two subtractions, one multiply, and one table lookup per sample

Simple Piecewise-Linear Reed Table



$$\hat{\rho}(h_{\Delta}^{+}) = \begin{cases} 1 - m(h_{\Delta}^{c} - h_{\Delta}^{+}), & -1 \le h_{\Delta}^{+} < h_{\Delta}^{c} \\ 1, & h_{\Delta}^{c} \le h_{\Delta}^{+} \le 1 \end{cases}$$

- \bullet Corner point $h^c_\Delta = {\rm smallest}$ pressure difference giving reed closure
- In fixed-point, $h_{\Delta}^+ \stackrel{\Delta}{=} p_m/2 p_b^+$ is confined to [-1, 1)
- Embouchure and reed-stiffness set by h^c_Δ and slope m $[m=1/(h^c_\Delta+1)$ in the figure]
- Zero at maximum negative pressure $h_{\Delta}^+=-1$ is not physical but is practical for inhibiting overflow
- A brighter tone is obtained by increasing the *curvature* as the reed begins to open [E.g., $\hat{\rho}^k(h_{\Delta}^+)$, for $k \gg 1$]

Further Details

- Input mouth pressure is summed with a small amount of white noise corresponding to turbulence, e.g., 0.1% plus more during attacks
- Turbulence *level* and *spectral shape* should be computed *automatically* as a function of pressure drop p_{Δ} and reed opening geometry (research topic)
- Simple reflection filter:

$$H(z) = \frac{1 + a_1(t)}{1 + a_1(t)z^{-1}}$$

where $a_1(t) = v(t) - 0.642$, $v(t) = A_v \sin(2\pi f_v t)$, $A_v =$ vibrato amplitude (e.g., 0.03), and $f_v =$ vibrato frequency (e.g., 5 Hz)

- Further loop filtering occurs as a result of using a linearly interpolated delay line for the bore
- Only one (double length) delay line is really used in typical implementations
- To avoid finger-hole models, legato note transitions can be managed using two delay line taps and cross-fading from one to the other during a transition

Alternative Reed Models

- A direct signal lookup, though requiring much higher resolution, would eliminate the multiply associated with the scattering coefficient
- Coefficient tables can be quantized more heavily in address and word length than direct lookup of a signal value such as $p_\Delta(p_\Delta^+)$
- Piecewise polynomial approximations are also used

Software

clarinet.cpp in the Synthesis Toolkit (STK):

http://ccrma.stanford.edu/CCRMA/Software/STK/