Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

For Faster Real-Time Computation


Pre-solve the graphical intersection and store the result in a look-up table

Let $ h$ denote half-pressure $ p/2$. Then

$\displaystyle p_b^{-}= \hm - \rho(p_{\Delta})\cdot h_{\Delta}^{+}
$

Subtracting both sides from $ p_b^{+}$ and solving for $ \rho$ gives

$\displaystyle \rho(p_{\Delta}) = \frac{p_{\Delta}}{h_{\Delta}^{+}}-1
$

Now, for each $ h_{\Delta}^{+}= \hm-p_b^{+}$, find $ p_{\Delta}$ graphically, and store the resulting reflection coefficient $ \rho(p_{\Delta})$ as a function of $ h_{\Delta}^{+}$:

\begin{eqnarray*}
\hat\rho (h_{\Delta}^{+}) = \rho(p_{\Delta}(h_{\Delta}^{+}))
\end{eqnarray*}

Then the real-time reed computation reduces simply to

$\displaystyle p_b^{-}= \hm - \hat\rho (h_{\Delta}^{+})\cdot h_{\Delta}^{+}
$

This is the form chosen for implementation above

Table-Reduced Reed Reflection Coefficient

\epsfig{file=eps/fSingleReedWGM.eps,width=6in}

Simple Piecewise-Linear Reed Table

\epsfig{file=eps/fReedTable.eps,width=6in}

$\displaystyle \hat\rho (h_{\Delta}^{+}) = \left\{
\begin{array}{ll}
1-m(h_{\Del...
...c-\hdp)^{-1}
1, & h_{\Delta}^c\leq h_{\Delta}^{+}\leq 1 \\
\end{array}\right.
$


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download SingleReeds.pdf
Download SingleReeds_2up.pdf
Download SingleReeds_4up.pdf

``Woodwind Models'', by Julius O. Smith III, (From Lecture Overheads, Music 420).
Copyright © 2007-01-08 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]