Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Length 3 FIR Loop Filter with Variable DC Gain

Relaxing the unity-dc-gain restriction, but keeping linear phase, we have

$\displaystyle H_l(z) = b_0 + b_1 z^{-1}+ b_0 z^{-2}$   (linear phase)

We can use the remaining two degrees of freedom for brightness $ B$ & sustain $ S$ :

\begin{eqnarray*}
g_0 &\mathrel{\stackrel{\mathrm{\Delta}}{=}}& e^{-6.91 P / S} \\ [5pt]
b_0 &=& g_0 (1 - B)/4 = b_2 \\
b_1 &=& g_0 (1 + B)/2
\end{eqnarray*}

where

\begin{eqnarray*}
P &=& \hbox{period in seconds (total loop delay)} \\
S &=& \hbox{desired sustain time in seconds} \\
B &=& \hbox{brightness parameter in the interval $[0,1]$}
\end{eqnarray*}

Sustain time $ S$ is defined here as the time to decay $ 60$ dB (or $ 6.91$ time-constants) when brightness $ B$ is maximum ($ B=1$ ). At minimum brightness ($ B=0$ ), we have

$\displaystyle \vert H_l(e^{j\omega T})\vert \;=\;g_0\frac{1 + \cos(\omega T)}{2} \;=\;g_0 \cos^2(\omega T)
$


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download SimpleStrings.pdf
Download SimpleStrings_2up.pdf
Download SimpleStrings_4up.pdf

``Elementary Digital Waveguide Models for Vibrating Strings'', by Julius O. Smith III, (From Lecture Overheads, Music 420).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]