Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

First-order system

Rewriting as a first-order system in the stresses and velocities $ (v_{x}, v_{y}, v_{z}) = \frac{\partial}{\partial t}(u_{x}, u_{y}, u_{z})$ gives

$\displaystyle \begin{bmatrix}\rho D_{t}&0&0&-D_{x}&0&0&-D_{y}&0&-D_{z}\\ 0&\rho D_{t}&0&0&-D_{y}&0&-D_{x}&-D_{z}&0\\ 0&0&\rho D_{t}&0&0&0&-D_{z}&-D_{y}&-D_{x}\\ -D_{x}&0&0&\beta D_{t}&\gamma D_{t}&\gamma D_{t}&0&0&0\\ 0&-D_{y}&0&\gamma D_{t}&\beta D_{t}&\gamma D_{t}&0&0&0\\ 0&0&-D_{z}&\gamma D_{t}&\gamma D_{t}&\beta D_{t}&0&0&0\\ -D_{y}&-D_{x}&0&0&0&0&\alpha D_{t}&0&0\\ 0&-D_{z}&-D_{y}&0&0&0&0&\alpha D_{t}&0\\ -D_{z}&0&-D_{x}&0&0&0&0&0&\alpha D_{t}\\ \end{bmatrix}\begin{bmatrix}v_{x}\\ v_{y}\\ v_{z}\\ \sigma_{xx}\\ \sigma_{yy}\\ \sigma_{zz}\\ \sigma_{xy}\\ \sigma_{xz}\\ \sigma_{yz}\\ \end{bmatrix}={\bf0}$    

with

$\displaystyle \alpha = \frac{1}{\mu}\hspace{0.5in}\beta = \frac{\mu+\lambda}{\mu\left(2\mu+3\lambda\right)}\hspace{0.5in}\gamma =\frac{\lambda}{2\mu\left(2\mu+3\lambda\right)}$    

Fix: vectorized differences.


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download Meshes.pdf
Download Meshes_2up.pdf
Download Meshes_4up.pdf

``Wave Digital Filters and Waveguide Networks for Numerical Integration of Time-Dependent PDEs'', by Stefan Bilbao<bilbao@ccrma.stanford.edu>, (From CCRMA DSP Seminar Presentation, Music 423).
Copyright © 2019-02-05 by Stefan Bilbao<bilbao@ccrma.stanford.edu>
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]