Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Two-Channel Critically Sampled Filter Banks

Let's begin with a simple two-channel case, with lowpass analysis filter $ H_0(z)$ , highpass analysis filter $ H_1(z)$ , lowpass synthesis filter $ F_0(z)$ , and highpass synthesis filter $ F_1(z)$ :


\begin{psfrags}\psfrag{x(n)}{\normalsize $x(n)$}\psfrag{x}{\normalsize $x$}\psfrag{(n)}{\normalsize $(n)$}\psfrag{y}{\normalsize $y$}\psfrag{v}{\normalsize $v$}\psfrag{H}{\normalsize $H$}\psfrag{F}{\normalsize $F$}\psfrag{z}{\normalsize $z$}\begin{center}\epsfig{file=eps/cqf.eps,width=6in} \\
\end{center}
\end{psfrags}

The outputs of the two analysis filters are then

$\displaystyle X_k(z) = H_k(z)X(z), \quad k=0,1
$

After downsampling, the signals become

$\displaystyle V_k(z) = \frac{1}{2}\left[X_k(z^{1/2}) + X_k(-z^{1/2})\right], \; k=0,1
$

After upsampling, the signals become
$\displaystyle Y_k(z) = V_k(z^2)$ $\displaystyle =$ $\displaystyle \frac{1}{2}[X_k(z) + X_k(-z)]$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}[H_k(z)X(z) + H_k(-z)X(-z)],\; k=0,1$  

After substitutions and rearranging, the output $ \hat{x}$ is a filtered replica plus an aliasing term:
$\displaystyle \hat{X}(z)$ $\displaystyle =$ $\displaystyle \frac{1}{2}[H_0(z)F_0(z) + H_1(z)F_1(z)]X(z)$  
  $\displaystyle +$ $\displaystyle \frac{1}{2}[H_0(-z)F_0(z) + H_1(-z)F_1(z)]X(-z)$  
    $\displaystyle \hbox{(Filter Bank Reconstruction)}$ (1)

We require the second term (the aliasing term) to be zero for perfect reconstruction. This is arranged if we set

$\displaystyle F_0(z)$ $\displaystyle =$ $\displaystyle \quad\! H_1(-z)$  
$\displaystyle F_1(z)$ $\displaystyle =$ $\displaystyle -H_0(-z)$  
    $\displaystyle \hbox{(Aliasing Cancellation Constraints)}
\protect$ (2)

Thus, Note that aliasing is completely canceled by this choice of synthesis filters $ F_0,F_1$ , for any choice of analysis filters $ H_0,H_1$ .

For perfect reconstruction, we additionally need

$\displaystyle c$ $\displaystyle =$ $\displaystyle H_0(z)F_0(z) + H_1(z)F_1(z)$  
    $\displaystyle \hbox{(Filtering Cancellation Constraint)}
\protect$ (3)

where $ c=Ae^{-j\omega D}$ is any constant $ A>0$ times a linear-phase term corresponding to $ D$ samples of delay.

Choosing $ F_0$ and $ F_1$ to cancel aliasing,

$\displaystyle c$ $\displaystyle =$ $\displaystyle H_0(z)H_1(-z) - H_1(z)H_0(-z)$  
    $\displaystyle \hbox{(Filtering and Aliasing Cancellation)}
\protect$ (4)

Perfect reconstruction thus also imposes a constraint on the analysis filters, which is of course true for any band-splitting filter bank.

Let $ {\tilde H}$ denote $ H(-z)$ . Then both constraints can be expressed in matrix form as

$\displaystyle \left[\begin{array}{cc} H_0 & H_1 \\ [2pt] {\tilde H}_0 & {\tilde H}_1 \end{array}\right]\left[\begin{array}{c} F_0 \\ [2pt] F_1 \end{array}\right]=\left[\begin{array}{c} c \\ [2pt] 0 \end{array}\right]
$


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download JFB.pdf
Download JFB_2up.pdf
Download JFB_4up.pdf
[Comment on this page via email]

``Multirate, Polyphase, and Wavelet Filter Banks'', by Julius O. Smith III, Scott Levine, and Harvey Thornburg, (From Lecture Overheads, Music 421).
Copyright © 2020-06-02 by Julius O. Smith III, Scott Levine, and Harvey Thornburg
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]