Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Critically Sampled STFT Filter Bank

We will now analyze the filter bank interpretation of the STFT with hop size set to $ R=M=N$ .

The kth subband signal in the DFT filter bank can be written as:

$\displaystyle X_k(m) = \sum_{n=-\infty}^{\infty}h(mN - n)x(n)W_N^{kn}
$

with $ W_N \equiv e^{-j2\pi/N}$ . The signal $ X_k(m)$ is regarded as a complex sequence formed from the $ k$ th DFT bin over time $ m$ (in frames).

Making the change of variable $ n=lN-r$ , the above equation becomes:

$\displaystyle X_k(m) = \sum_{r=0}^{N-1}u_r(m)W_N^{kn} \protect$ (11)

with

$\displaystyle u_r(m) \equiv \sum_{l=-\infty}^{\infty}h(mN-lN+r)x(lN-r) \protect$ (12)

Therefore, ([*]) can be interpreted as computing a length-$ N$ FFT applied to the input block $ [u_0(m) \cdots u_{N-1}(m)]^T$ .

Now, we'll form a simpler representation of the sequence $ u_r(m)$ . First, define the polyphase decomposition of $ h(n)$ and $ x(m)$ :

$\displaystyle p_i(m) = h(mN + i), \hspace{.5cm} i=0,1,...,N-1$

If the filter $ h(n)$ has length $ M=LN$ , then each of its polyphase components $ p_r(m)$ has length $ L$ . Now define the sequence $ x_r(m)$

$\displaystyle x_r(m) \equiv x(mN - r), \hspace{.5cm} r=0,1,...,N-1$

Finally, ([*]) can be expressed as:

$\displaystyle u_r(m) = \sum_{l=-\infty}^{\infty}p_r(m-l)x_r(m)$ (13)

Thus, every input bin to the DFT is actually a convolution between $ x_r(m)$ and $ p_i(m)$ , the $ i$ th polyphase filter of the lowpass prototype filter, $ h(n)$ .


Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download JFB.pdf
Download JFB_2up.pdf
Download JFB_4up.pdf
[Comment on this page via email]

``Multirate, Polyphase, and Wavelet Filter Banks'', by Julius O. Smith III, Scott Levine, and Harvey Thornburg, (From Lecture Overheads, Music 421).
Copyright © 2020-06-02 by Julius O. Smith III, Scott Levine, and Harvey Thornburg
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]