Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Variable FIR Interpolating Filter

Basic idea: Each FIR filter coefficient $ h_n$ becomes an order $ {N_c}$ polynomial in the delay parameter $ \Delta$ :

\begin{eqnarray*}
h_\Delta(n) &\mathrel{\stackrel{\mathrm{\Delta}}{=}}& \sum_{m=0}^{N_c}c_n(m)\Delta^m, \quad n=0,1,2,\ldots,{N_h}\\
\Leftrightarrow \;
H_\Delta(z) &\mathrel{\stackrel{\mathrm{\Delta}}{=}}& \sum_{n=0}^{N_h}h_\Delta(n)z^{-n} \\
&=& \sum_{n=0}^{N_h}\left[\sum_{m=0}^{N_c}c_n(m)\Delta^m\right]z^{-n}\\
&=& \sum_{m=0}^{N_c}\left[\sum_{n=0}^{N_h}c_n(m) z^{-n}\right]\Delta^m \\
&\mathrel{\stackrel{\mathrm{\Delta}}{=}}& \sum_{m=0}^{N_c}C_m(z) \Delta^m
\end{eqnarray*}


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download Interpolation.pdf
Download Interpolation_2up.pdf
Download Interpolation_4up.pdf
Visit the online book containing this material.

``Bandlimited Interpolation, Fractional Delay Filtering, and Optimal FIR Filter Design'', by Julius O. Smith III, (From Lecture Overheads, Music 420).
Copyright © 2022-09-05 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]