
MUS420 Lecture 4A
Interpolated Delay Lines, Ideal Bandlimited

Interpolation, and Fractional Delay Filter Design

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)

Department of Music, Stanford University
Stanford, California 94305

September 5, 2022

1

Outline

• Low-Order (Fast) Interpolators

– Linear

– Allpass

• High-Order Interpolation

– Ideal Bandlimited Interpolation

– Windowed-Sinc Interpolation

• High-Order Fractional Delay Filtering

– Lagrange

– Farrow Structure

– Thiran Allpass

• Optimal FIR Filter Design for Interpolation

– Least Squares

– Comparison to Lagrange

2

Simple Interpolators suitable for Real
Time Fractional Delay Filtering

Linearly Interpolated Delay Line (1st-Order FIR)

M samples delay z−1

η

1 η−

y(n) ()Mnŷ η−−

Allpass Interpolated Delay Line (1st-Order)

M samples delay z−1y(n)

η

η−

()Mnŷ ∆−−

∆ ≈
1− η

1 + η

3

Linear Interpolation

Simplest of all, and the most commonly used:

ŷ(n− η) = (1− η) · y(n) + η · y(n− 1)

where η = desired fractional delay.

One-multiply form:

ŷ(n− η) = y(n) + η · [y(n− 1)− y(n)]

• Works best with lowpass signals
(Natural spectra tend to roll off rapidly)

• Works well with over-sampling

• For faster linear interpolation, prepare a difference

table containing yd(n) = y(n− 1)− y(n) so that

ŷ(n− η) = y(n) + ηyd(n)

4

http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/

Deriving Linear Interpolation from Taylor Series

Truncate a Taylor series expansion to first order and plug
in a first-order derivative approximation:

y(n + α) = y(n) + α ẏ(n) + α2 ÿ(n)

2!
+ α3

...
y (n)

3!
+ · · ·

≈ y(n) + α ẏ(n)

⇒ ŷ(n + α)
∆
= y(n) + α

y(n + 1)− y(n)

1

= α y(n + 1) + (1− α) y(n)

where α = −η = fractional advance desired
(interpolation time between samples n and n + 1)

• Same approach can be used to define higher-order
interpolation filters using various choices of
higher-order derivative approximations

• Recall the many finite-difference schemes we have

5

Examples

Half-sample delay:

ŷ

(

n−
1

2

)

=
1

2
· y(n) +

1

2
· y(n− 1)

Quarter-sample delay:

ŷ

(

n−
1

4

)

=
3

4
· y(n) +

1

4
· y(n− 1)

6

Frequency Responses of Linear Interpolation for
Delays between 0 and 1

0 0.5 1 1.5 2 2.5 3
-20

-15

-10

-5

0

5
Linear Interpolating Filters, Del= [0.001:0.1:1]

Frequency (radians/sample)

A
m

pl
itu

de
 -

 d
B

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Frequency (radians/sample)

P
ha

se
 D

el
ay

 -
 s

am
pl

es

7

Linear Interpolation as a Convolution

• Equivalent to filtering the continuous-time weighted
impulse train

∞
∑

n=−∞

y(nT)δ(t− nT)

with the continuous-time “triangular pulse” FIR filter

hl(t) =

{

1− |t/T | , |t| ≤ T

0, otherwise

followed by sampling at the desired phase

Discrete-Time Approximation

z−LM M ()M

L
nx̂ −()nx

• Replacing hl(t) by hs(t)
∆
= sinc

(

t
T

)

converts linear
interpolation to ideal bandlimited interpolation (see
“sinc interpolation” below)

8

First-Order Allpass Interpolation

x̂(n−∆)
∆
= y(n) = η · x(n) + x(n− 1)− η · y(n− 1)

= η · [x(n)− y(n− 1)] + x(n− 1)

H(z) =
η + z−1

1 + ηz−1

• Low frequency delay given by (exact at DC):

∆ ≈
1− η

1 + η
⇐⇒ η ≈

1−∆

1 + ∆

• Same complexity as linear interpolation

• Good for delay-line interpolation, not random access

• Best used with fixed fractional delay ∆

• To avoid pole near z = −1, offset delay range, e.g.,

∆ ∈ [0.1, 1.1] ↔ η ∈ [−0.05, 0.82]

• Change delay slowly compared to τ ≈ T/(1− ηmax)

Intuitively, ramping the coefficients of the allpass
gradually “grows” or “hides” one sample of delay. This
tells us how to handle resets when crossing sample
boundaries (sufficiently slowly).

9

Phase Delays of First-Order Allpass Interpolators
for Various Desired Delays

0 0.5 1 1.5 2 2.5 3
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

First-Order Allpass Interpolating Filters, Del= [0.001:0.1:1.2]

Frequency (radians/sample)

P
ha

se
 D

el
ay

 -
 s

am
pl

es
10

Interpolation Overview

Well Known Closed-Form Solutions

Order

1 N Large N ∞

FIR Linear Lagrange Windowed Sinc
IIR Allpass1 Thiran Sinc

Tabulated Alternative (Order N)

Design a digital filter (FIR or IIR) that approximates

H∆

(

ejωT
)

= e−jω∆T , ∆ = Desired delay in samples

optimally in some sense, with coefficients tabulated over a
range including ∆ samples (and interpolated on lookup).

Itinerary Below

• Ideal Bandlimited (Sinc) Interpolation

• Windowed Sinc Interpolation (still perceptually ideal
up to some band edge)

• Lagrange FIR (polynomial) Interpolation

• Thiran IIR Interpolation

11

Ideal Bandlimited (Sinc) Interpolation

Ideal interpolation for digital audio is bandlimited
interpolation, i.e., samples are uniquely interpolated
based on the assumption of zero spectral energy for
|f | ≥ fs/2.

Ideal bandlimited interpolation is sinc interpolation:

y(t) = (y ∗ hs)(t) =
∞
∑

n=−∞

y(nT)hs(t− nT)

where

hs(t)
∆
= sinc(fst)

∆
= sinc

(

t

T

)

sinc(x)
∆
=

sin(πx)

πx
(sinc function)

(Proof: sampling theorem)

12

The Sinc Function (“Cardinal Sine”)

sinc(t)
∆
=

{

sin(πt)
πt , t 6= 0

1, t = 0

-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

1

. . .
. . .

. . .
. . .

Sinc Function

The sinc function is the impulse response of the ideal
lowpass filter which cuts off at half the sampling rate

Ideal Lowpass Filter Frequency Response

0.2

0.4

0.6

0.8

1

π−π 0

13

Applications of Bandlimited Interpolation

Bandlimited Interpolation is used in (e.g.)

• Sampling-rate conversion

• Oversampling D/A converters

• Wavetable/sampling synthesis

• Virtual analog synthesis

• Fractional delay filtering

Fractional delay filtering is a special case of bandlimited
interpolation:

• Fractional delay filters only need sequential access ⇒
IIR filters can be used

• General bandlimited-interpolation requires random
access ⇒ FIR filters normally used

Fractional Delay Filters are used for (among other things)

• Time-varying delay lines (flanging, chorus, leslie)

• Tuning digital waveguide models to correct pitch

• Exact tonehole placement in woodwind models

• Beam steering of microphone / speaker arrays

14

Ideal D/A Conversion

Each sample in the time domain scales and locates one
sinc function in the unique, continuous, bandlimited
interpolation of the sampled signal.

Convolving a sampled signal y(n) with sinc(n− η)
“evaluates” the signal at an arbitrary continuous time
η ∈ R:

y(η) =

∞
∑

n=−∞

y(n)sinc(η − n)

Proof: Sampling Theorem

15

Ideal D/A Example

Reconstruction of a bandlimited rectangular pulse x(t)
from its samples x = [. . . , 0, 1, 1, 1, 1, 1, 0, . . .]:

Bandlimited Rectangular Pulse Reconstruction from its
Samples

Catch

• Sinc function is infinitely long and noncausal

• Must be available in continuous form

16

Supplementary: Optimal Least Squares
Bandlimited Interpolation Formulated as

a Fractional Delay Filter

Consider a filter which delays its input by ∆ samples:

• Ideal impulse response = bandlimited delayed impulse

= delayed sinc

h∆(t) = sinc(t−∆)
∆
=

sin [π(t−∆)]

π(t−∆)

• Ideal frequency response = “brick wall” lowpass

response, cutting off at fs/2 and having linear phase

e−jω∆T

H∆(ω)
∆
= FT(h∆) =

{

e−jω∆, |ω| < πfs

0, |ω| ≥ πfs

→ H∆(e
jωT) = e−jω∆T , −π ≤ ωT < π

↔ sinc(n−∆), n = 0,±1,±2, . . .

after critically sampling in the time domain.

The sinc function is an infinite-impulse-response (IIR)
digital filter with no recursive form ⇒ non-realizable.

To obtain a finite impulse response (FIR) interpolating
filter, let’s formulate a least-squares filter-design problem:

17

Desired Interpolator Frequency Response

H∆

(

ejωT
)

= e−jω∆T , ∆ = Desired delay in samples

FIR Frequency Response, Zero-Phase
Alignment

Ĥ∆

(

ejωT
)

=

L−1
2

∑

n=−L−1
2

ĥ∆(n)e
−jωnT

Error to Minimize

E
(

ejωT
)

= H∆

(

ejωT
)

− Ĥ∆

(

ejωT
)

L2 Error Norm

J(h)
∆
= ‖E ‖22 =

T

2π

∫ π/T

−π/T

∣

∣E
(

ejωT
)
∣

∣

2
dω

=
T

2π

∫ π/T

−π/T

∣

∣

∣
H∆

(

ejωT
)

− Ĥ∆

(

ejωT
)

∣

∣

∣

2

dω

By Parseval’s Theorem

J(h) =

∞
∑

n=0

∣

∣

∣
h∆(n)− ĥ∆(n)

∣

∣

∣

2

Optimal Least-Squares FIR Interpolator

ĥ∆(n) =

{

sinc(n−∆), L−1
2 ≤ n ≤ L−1

2

0, otherwise

18

Truncated-Sinc Interpolation

Truncate sinc(t) at 5th zero-crossing to left and right of
time 0 to get the following amplitude response:

Frequency Response : Rectangular Window

-400 -200 200 400

-80

-60

-40

-20

Truncated-Sinc Transform

• Vertical axis in dB, horizontal axis in spectral samples

• Optimal in least-squares sense

• Poor stop-band rejection (≈ 20 dB)

• “Gibbs Phenomenon” gives too much “ripple”

• Ripple can be reduced by tapering the sinc function
to zero instead of simply truncating it

19

Windowed Sinc Interpolation

• Sinc function can be windowed more generally to yield

ĥ∆(n) =

{

w(n−∆)sinc[α(n−∆)], 0 ≤ n ≤ L− 1

0, otherwise

• Example of window method for FIR lowpass filter
design applied to sinc functions (ideal lowpass filters)
sampled at various phases (corresponding to desired
delay between samples)

• For best results, ∆ ≈ L/2 (causal length L window)

• w(n) is any real symmetric window (e.g., Hamming,
Blackman, Kaiser)

• Non-rectangular windows taper truncation which
reduces Gibbs phenomenon, as in FFT analysis

• α < 1 provides for a nonzero transition band

20

Spectrum of Kaiser-windowed Sinc

Frequency Response : Kaiser Window

-400 -200 200 400

-140

-120

-100

-80

-60

-40

-20

Kaiser-Windowed Sinc Transform

• Stopband now starts out close to −80 dB

• Kaiser window has a single parameter which trades off
stop-band attenuation versus transition-bandwidth
from pass-band to stop-band

21

Lowpass Filter Design

ω

Gain

ωc
0

0

1

ωs

2

Transition

Band

Pass

Band

Stop

Band

Frequency

Lowpass Filter Design Parameters

• In the transition band, frequency response “rolls off”
from 1 at ωc = αωs/2 to zero (or ≈ 0.5) at ωs/2

• Interpolation can be “perfect” in pass-band

Online references (FIR interpolator design)

• Music 421 Lecture 2 on Windows1

• Music 421 Lecture 3 on FIR Digital Filter Design2

• Optimal FIR Interpolator Design3

1http://ccrma.stanford.edu/~jos/Windows/
2http://ccrma.stanford.edu/~jos/WinFlt/
3http://ccrma.stanford.edu/~jos/resample/optfir.pdf

22

Oversampling Reduces Filter Length

• Example 1:

– fs = 44.1 kHz (CD quality)

– Audio upper limit = 20 kHz

– Transition band = 2.05 kHz

– FIR filter length
∆
= L1

• Example 2:

– fs = 48 kHz (e.g., DAT)

– Audio upper limit = 20 kHz

– Transition band = 4 kHz

– FIR filter length ≈ L1/2

• Required FIR filter length varies inversely with
transition bandwidth
⇒ Required filter length in example 1 is almost double
(≈ 4/2.1) the required filter length for example 2

• Increasing the sampling rate by less than ten percent
reduces the filter expense by almost fifty percent in
this example

23

The Digital Audio Resampling Home Page

• C++ software for windowed-sinc interpolation

• C++ software for FIR filter design by window method

• Fixed-point data and filter coefficients

• Can be adapted to time-varying resampling

• Open source, free

• First written in 1983 in SAIL

• URL:
http://ccrma.stanford.edu/~jos/resample/

• Interesting comparisons of various audio interpolators
out there:
http://src.infinitewave.ca/

• Most needed upgrade:

– Design and install a set of optimal FIR
interpolating filters.4

4http://ccrma.stanford.edu/~jos/resample/optfir.pdf

24

http://ccrma.stanford.edu/~jos/Windows/
http://ccrma.stanford.edu/~jos/WinFlt/
http://ccrma.stanford.edu/~jos/resample/optfir.pdf
http://ccrma.stanford.edu/~{}jos/resample/
http://src.infinitewave.ca/
http://ccrma.stanford.edu/~jos/resample/optfir.pdf

Interpolator Types

Order

1 N Large N ∞

FIR Linear Lagrange Windowed Sinc
IIR Allpass1 Thiran Sinc

25

Lagrange Interpolation

• Lagrange interpolation is just polynomial interpolation

• N th-order polynomial interpolates N + 1 points

• First-order case = linear interpolation

Problem Formulation

Given a set of N + 1 known samples f (xk),
k = 0, 1, 2, . . . , N , find the unique order N polynomial

y(x) which interpolates the samples

Solution (Waring, Lagrange):

y(x) =
N
∑

k=0

lk(x)f (xk)

where lk(x) is the Lagrange polynomial corresponding to
sample xk:

lk(x)
∆
=

(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xN)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xN)

• Numerator gives a zero at all samples but the kth

• Denominator simply normalizes lk(x) to 1 at x = xk

26

• As a result,

lk(xj) = δkj
∆
=

{

1, j = k

0, j 6= k

• Generalized bandlimited impulse = generalized sinc
function:
Each lk(x) goes through 1 at x = xk and zero at all
other sample points
I.e., lk(x) is analogous to sinc(x− xk)

• For uniformly spaced samples, Lagrange interpolaton
converges to sinc interpolation as N →∞

• For uniformly spaced samples and finite N , Lagrange
interpolaton is equivalent to windowed sinc

interpolation using a binomial window

(see text for refs)

• Nonuniformly spaced sample locations, such as along
the zeros of a Chebyshev polynomial, generally do
better than uniform spacing, when applicable

27

Lagrange Interpolation Optimality

In the uniformly sampled case, Lagrange interpolation
can be viewed as an FIR filter with coefficients that
depend on the fractional part of the “interpolation time”
(sample times on the integers)

• Lagrange interpolation filters are maximally flat in the
frequency domain about dc:

dmE(ejω)

dωm

∣

∣

∣

∣

ω=0

= 0, m = 0, 1, 2, . . . , N,

(1st N + 1 terms of Taylor expansion about ω = 0
zeroed), where

E(ejω)
∆
= e−jω∆ −

N
∑

n=0

h∆(n)e
−jωn

and ∆ is the desired delay in samples
(see text for proof)

• Same optimality criterion as Butterworth filters in
classical analog filter design

• Can also be viewed as “Padé approximation” to a
constant frequency response

• Also bounded by 1 in the frequency domain:

|H(ejωT)| ≤ 1, ∀ωT ∈ [−π, π]

28

Order 4 Amplitude Response Over a Range of
Fractional Delays

-8

-7

-6

-5

-4

-3

-2

-1

0

0 0.1 0.2 0.3 0.4 0.5

M
ag

ni
tu

de
 (

dB
)

Normalized Frequency (cycles/sample)

∆ = 1.5 :0.1 :2.5

29

Order 4 Phase Delay Over a Range of Fractional
Delays

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 0.1 0.2 0.3 0.4 0.5

P
ha

se
 D

el
ay

 (
sa

m
pl

es
)

Normalized Frequency (cycles/sample)

∆ = 1.5 :0.1 :2.5 plus 2.499

• Requested delay 2.5 veers off to 3 samples at fs/2

• Requested delay 2.499 swings down to 2 samples at
fs/2 like the other delay curves

• Preferable to use modulated delays converging to the
same integer at fs/2 (possible over a one-sample
modulation range)

30

Order 5 Amplitude Response Over a Range of
Fractional Delays

-100

-80

-60

-40

-20

0

0 0.1 0.2 0.3 0.4 0.5

M
ag

ni
tu

de
 (

dB
)

Normalized Frequency (cycles/sample)

∆ = 2.0 :0.1 :3.0 plus 2.495 and 2.505

31

Order 5 Phase Delay Over a Range of Fractional
Delays

2

2.2

2.4

2.6

2.8

3

0 0.1 0.2 0.3 0.4 0.5

P
ha

se
 D

el
ay

 (
sa

m
pl

es
)

Normalized Frequency (cycles/sample)

∆ = 2.0 :0.1 :3.0 plus 2.495 and 2.505

• Notice sudden jump to an integer delay at fs/2 for
curves near delay 2.5 samples

– Phase delay for 2.495 samples swings down to 2

– Phase delay for 2.505 samples swings up to 3

• Phase delay for 2.5 samples can be considered exact
(gain=0 at fs/2)

32

Explicit Formula for Lagrange Interpolation
Coefficients

h∆(n) =

N
∏

k=0
k 6=n

∆− k

n− k
, n = 0, 1, 2, . . . , N

y(n)

h∆(N)h∆(0)

. . .

h∆(1) h∆(2)

. . .

h∆(N − 1)

x(n) z−1 z−1z−1

Lagrange Interpolation Coefficients
Orders 1, 2, and 3

h∆Order h∆(0) h∆(1) h∆(2) h∆(3)

N = 1 1−∆ ∆

N = 2 (∆−1)(∆−2)
2 −∆(∆− 2) ∆(∆−1)

2

N = 3 − (∆−1)(∆−2)(∆−3)
6

∆(∆−2)(∆−3)
2 −∆(∆−1)(∆−3)

2
∆(∆−1)(∆−2)

6

• For N = 1, Lagrange interpolation reduces to linear

interpolation h = [1−∆,∆], as before

• For order N , desired delay should be in a one-sample
range centered about ∆ = N/2

33

Matlab Code For Lagrange Fractional Delay

function h = lagrange(N, delay)

%LAGRANGE h=lagrange(N,delay) returns order N FIR

% filter h which implements given delay

% (in samples). For best results,

% delay should be near N/2 +/- 1.

n = 0:N;

h = ones(1,N+1);

for k = 0:N

index = find(n ~= k);

h(index) = h(index) * (delay-k)./ (n(index)-k);

end

34

Faust Code For Lagrange Fractional Delay

For an intro to Faust, see, e.g.,

http://ccrma.stanford.edu/~jos/spf/

// Fourth-order case - delay d should be at least 1.5

fdelay4(n,d,x) =

delay(n,id,x) * fdm1*fdm2*fdm3*fdm4/24

+ delay(n,id+1,x) * (0-fd*fdm2*fdm3*fdm4)/6

+ delay(n,id+2,x) * fd*fdm1*fdm3*fdm4/4

+ delay(n,id+3,x) * (0-fd*fdm1*fdm2*fdm4)/6

+ delay(n,id+4,x) * fd*fdm1*fdm2*fdm3/24

with {

o = 1.49999;

dmo = d - o; // assumed nonnegative

id = int(dmo);

fd = o + frac(dmo);

fdm1 = fd-1;

fdm2 = fd-2;

fdm3 = fd-3;

fdm4 = fd-4;

};

35

Faust-Generated C++ Code

Inner-loop function generated by Faust:

virtual void

compute (int count, float** input, float** output)

{

float* output0 = output[0];

for (int i=0; i<count; i++) {

iVec0[0] = 1;

iRec0[0] = ((1 + iRec0[1]) & 15);

ftbl0[iRec0[0]] = (1 - iVec0[1]);

output0[i] =

((((0.468750f * ftbl0[((iRec0[0] - 1) & 15)])

+ (2.343750e-02f * ftbl0[((iRec0[0] - 4) & 15)]))

+ (0.703125f * ftbl0[((iRec0[0] - 2) & 15)]))

- ((0.156250f * ftbl0[((iRec0[0] - 3) & 15)])

+ (3.906250e-02f * ftbl0[(iRec0[0] & 15)])));

// post processing

iRec0[1] = iRec0[0];

iVec0[1] = iVec0[0];

}

}

Test Program (Faust 0.9.9.3):

import("filter.lib");

N = 16;

impulse = 1-1’;

process = impulse : fdelay4(N,1.5);

36

http://ccrma.stanford.edu/~jos/spf/

Faust Test Program for Generating Above
Frequency-Response Examples

import("filter.lib"); % Faust v0.9.9.3

N = 16; % Allocated delay-line length

D = 5.4; % Requested delay

process = impulse <: (

fdelay4(N, 1.5),

fdelay4(N, 1.6),

fdelay4(N, 1.7),

...

fdelay4(N, 2.4),

fdelay4(N, 2.499),

fdelay4(N, 2.5));

// To see amplitude responses (for example):

// [in a shell]:

// faust2octave tlagrange.dsp

// [at the Octave command prompt]:

// plot(db(fft(faustout,1024)(1:512,:)));

// Alternate example for testing a range of orders

// process = 1-1’ <: (fdelay1(N,D),

// fdelay2(N,D),

// fdelay3(N,D),

// fdelay4(N,D),

// fdelay5(N,D));

37

Relation of Lagrange Interpolation to Windowed
Sinc Interpolation

• For an infinite number of equally spaced samples,
with spacing xk+1 − xk = ∆, the
Lagrange-interpolation basis polynomials converge to
shifts of the sinc function, i.e.,

lk(x) = sinc

(

x− k∆

∆

)

, k = . . . ,−2,−1, 0, 1, 2, . . .

Proof: As order →∞, the binomial window →
Gaussian window → constant (unity).

38

Variable FIR Interpolating Filter

Basic idea: Each FIR filter coefficient hn becomes an
order Nc polynomial in the delay parameter ∆:

h∆(n)
∆
=

Nc
∑

m=0

cn(m)∆m, n = 0, 1, 2, . . . , Nh

⇔ H∆(z)
∆
=

Nh
∑

n=0

h∆(n)z
−n

=

Nh
∑

n=0

[

Nc
∑

m=0

cn(m)∆m

]

z−n

=

Nc
∑

m=0

Nh
∑

n=0

cn(m)z−n

∆m

∆
=

Nc
∑

m=0

Cm(z)∆
m

• More generally: H∆(x) =
∑

m α(∆)Cm(z)
where α(∆) is provided by a table lookup

• Basic idea applies to any one-parameter filter
variation

• Also applies to time-varying filters (∆← t)

39

Farrow Structure for Variable Delay FIR Filters

Evaluate polynomial in ∆ using Horner’s rule:

X̂n−∆(z) = C0X+∆ [C1X +∆ [C2X + · · · +∆ [C3X + · · ·]]] ,

⇒ filter structure becomes

. . .

x̂(n−∆)

x(n) . . .

. . .

∆

CNc−1(z)

∆

CNc−2(z) C0(z)C1(z)

∆

As delay ∆ varies, “basis filters” Ck(z) remain fixed

⇒ very convenient for changing ∆ over time

Farrow Structure Design Procedure

Solve the N∆ equations

z−∆i =

N
∑

k=0

Ck(z)∆
k
i , i = 1, 2, . . . , N∆

for the Nh + 1 FIR transfer functions Ck(z), each order
Nc in general

References: Laakso et al., Farrow

40

Farrow Interpolation Features

• The Farrow structure computes N th-order Lagrange
interpolation using O(N 2) multiplies and adds

• This is the same complexity as plain FIR filtering
using the closed-form coefficient formulas above

• However, the Farrow structure is more convenient for
variable-delay applications because it is a linear
combination of N fixed FIR filters Ck(z),
k = 1, . . . , N , with linear combination coefficients
given by ∆k, computed recursively, where ∆ is the
desired delay:

x̂(n−∆) = x(n)+∆·[(c1∗x)(n)+∆·[(c2∗x)(n)+· · ·

• The next section describes a formulation achieving
complexity O(N)

41

Lagrange Interpolation by Taylor Expansion

The transfer function of a ∆-sample delay is

H∆(z) = z−∆

• N th-order Lagrange interpolation approximates
H∆(z) with a length N + 1 FIR filter

Ĥ∆(z) = h∆(0) + h∆(1) z
−1 + · · · + h∆(N) z−N

• We know Lagrange interpolation is maximally flat
about dc

• Maximally flat means using all degrees of freedom

{h∆(n)}
N
n=0 to zero leading terms in the Taylor series

expansion of the frequency-response error
E(z) = H∆(z)− Ĥ∆(z) about dc (z = 1)

• This means matching the first N + 1 terms of the
Taylor expansion of H∆(z) = z−∆ about z = 1

42

Taylor Series Expansion of z−∆
∆
= q∆

To obtain a causal FIR filter, we will expand H∆(z) in
powers of z−1 instead of z. For simplicity of notation,
define q = z−1. Then we obtain the Taylor series
expansion of H∆(q

−1) = q∆ about q = 1 to be

H∆(q
−1) = H∆(1) +H ′∆(1)(q − 1) +

1

2
H ′′∆(1)(q − 1)2 +

1

3!
H ′′′∆(1)(q − 1)3 + · · ·

= 1 + ∆ q∆−1
∣

∣

q=1
(q − 1) +

1

2
∆(∆− 1) q∆−2

∣

∣

q=1
(q − 1)2 + · · ·

= 1 +∆ · (q − 1) +
1

2
∆(∆− 1) · (q − 1)2 +

1

3!
∆(∆− 1)(∆− 2) · (q − 1)3 + · · ·

where the derivatives are with respect to q = z−1, e.g.,
H ′∆(q)

∆
=

d
dqq

∆ = ∆q∆−1. Our maximally flat N th-order
Langrange FIR interpolation filter is obtain by truncating
this expansion at order N :

Ĥ∆(q
−1)

∆
= 1 +∆(q − 1) +

1

2
∆(∆− 1)(q − 1)2 +

1

3!
∆(∆− 1)(∆− 2)(q − 1)3

+ · · ·+
1

N !

[

N−1
∏

k=0

(∆− k)

]

(q − 1)N

∆
= ~∆(0) + ~∆(1)(q − 1) + ~∆(2)(q − 1)2 + · · ·+ ~∆(N)(q − 1)N

where

~∆(n)
∆
=

1

n!

n−1
∏

k=0

(∆−k) =
∆(∆− 1)(∆− 2) · · · (∆− n + 1)

n!

This can be viewed as an FIR filter structure in which the
usual delay elements are replaced by q − 1 = z−1 − 1.

43

Recursive Term Computation

Our Lagrange interpolation filter is again

Ĥ∆(q
−1) =

N
∑

n=0

~∆(n)(q − 1)n

where the coefficients of (q − 1)n = (z−1 − 1)n are again

~∆(n)
∆
=

1

n!

n−1
∏

k=0

(∆−k) =
∆(∆− 1)(∆− 2) · · · (∆− n + 1)

n!

Note that we can recursively compute the terms in the
sum from left to right:

~∆(n) = ~∆(n− 1) ·
∆− n + 1

n
(q − 1)n = (q − 1)n−1 · (q − 1)

Thus, we can crank out the terms in series and sum the
intermediate signals:

. . . yN−1(n) yN(n)

∆−N+1

N
∆

y1(n) y2(n)

∆−1

2

. . .

. . .

x(n) q − 1q − 1q − 1

44

Efficient Time-Invariant Lagrange Interpolation

We derived the following efficient implementation:

. . . yN−1(n) yN(n)

∆−N+1

N
∆

y1(n) y2(n)

∆−1

2

. . .

. . .

x(n) q − 1q − 1q − 1

Replacing q by z−1 and manipulating signs gives the
following:

. . . yN−1(n) yN(n)

N−1−∆

N
−∆

y1(n) y2(n)

1−∆

2

. . .

. . .

x(n) 1− z−11− z−11− z−1

• Note that Langrange interpolators of all orders
1, 2, . . . , N are available at the summer outputs. The
signal yk(n) is the kth-order Lagrange-interpolation
approximation of x(n−∆).

• Note that this recursive implementation is only valid
for constant ∆ since the first-order differences
“remember” past values of ∆.

45

Time-Varying Lagrange Interpolation

To allow for time-varying ∆, the coefficients ~∆(k) can
be moved out of the (q − 1)k chain as follows:

x(n) . . .

. . .

N−1−∆

N

yN(n)
−∆ 1−∆

2

1− z−11− z−1 1− z−1

• In this case the lower-order interpolations are not
readily available.

• As in the Farrow structure, we obtain a variable linear
combination of fixed FIR filters (1− z−1)k,
k = 0, 1, 2, . . . N .

46

A More Elegant Derivation

Define the backwards difference operator δ by

δf (n)
∆
= f (n)− f (n− 1)

and the factorial polynomials (aka rising factorials or
Pochhammer symbol) by

x[N] ∆
= x(x + 1)(x + 2) · · · (x +N − 2)(x +N − 1)

These give a discrete-time counterpart to
d
dxx

N = NxN−1, viz.,

δ x[N] = N x[N−1]

In these terms, a discrete-time Taylor series about n = k
can be defined:

f̂ (t)
∆
=

∞
∑

n=0

[δnf (k)]
(t− k)[n]

n!

• Known as “Newton’s Backward Difference Formula”

• Truncating this expansion at n = N again yields
N th-order Lagrange interpolation on uniformly
spaced samples

47

N th-order Lagrange interpolation via truncated
discrete-time Taylor series expansion about time n = k:

f̂ (t)
∆
=

N
∑

n=0

[δnf (k)]
(t− k)[n]

n!

Each term in the expansion can be computed recursively

from the previous term:

[δnf (k)]
(t− k)[n]

n!
= [δn−1f (k)]

(t− k)[n−1]

(n− 1)!
×

t− k +N − 1

N
· [δf (k)]

This gives the same efficient computational form found
previously:

. . . yN−1(n) yN(n)

N−1−∆

N
−∆

y1(n) y2(n)

1−∆

2

. . .

. . .

x(n) 1− z−11− z−11− z−1

where ∆
∆
= k − t is the desired delay for fractional-delay

filtering, and yk(n) is the output signal for kth-order
Lagrange interpolation (modular!). See also Newton’s

divided difference interpolation formula.

48

Features of Truncated-Taylor
Lagrange-Interpolation

. . . yN−1(n) yN(n)

N−1−∆

N
−∆

y1(n) y2(n)

1−∆

2

. . .

. . .

x(n) 1− z−11− z−11− z−1

• Computational Complexity = 3N − 1 multiplies and
3N − 2 additions for N th-order interpolation

• If multiplication factors for a given delay ∆ = k − t
are stored in memory, then the complexity reduces to
N multiplies and 2N − 2 adds per output sample
(multiplies comparable to a plain FIR interpolator, but
additions are ≈ doubled)

• Interpolation order can be increased or decreased by
modularly adding/deleting sections on the right

49

References

• Timo Laakso et al., “Splitting the Unit Delay—Tools for

Fractional Delay Filter Design.” IEEE Signal Processing

Magazine, vol. 13, no. 1, pp. 30–60, Jan 1996.

• Philippe Depalle and Stephan Tassart, “Fractional Delay Lines

using Lagrange Interpolators,” ICMC Proceedings, pp. 341–343,

1996.

• Candan, C., “An Efficient Filtering Structure for Lagrange

Interpolation,” Signal Processing Letters, IEEE, vol. 14, no. 1,

pp. 17–19, Jan. 2007

• Vesa Lehtinen and Markku Renfors, “Structures for

Interpolation, Decimation, and Nonuniform Sampling Based on

Newton’s Interpolation Formula.” SAMPTA’09, May 2009,

Marseille, France.

• Andreas Franck, “Efficient Algorithms and Structures for

Fractional Delay Filtering Based on Lagrange Interpolation,”

JAES vol. 56, no. 12, 2008.

• http://boytim.orgfree.com/asrc/

• http://mathworld.wolfram.com/-

NewtonsDividedDifferenceInterpolationFormula.html

50

Lagrange Interpolation in Faust, Fixed Delay d

Fast time-invariant-delay algorithm fdelaylti — derived by

truncated Taylor series expansion above — in Faust’s filter.lib

import("music.lib");

fdelaylti(N,n,d,x)

= delay(n,id,x) <: seq(i,N,section(i)) : !,_

with {

o = (N-1.00001)/2; // ~center FIR interpolator

dmo = d - o; // assumed >=0 [d > (N-1)/2]

id = int(dmo);

fd = o + frac(dmo);

section(i,x,y) = (x-x’) * c(i) <: _,+(y);

c(i) = (i - fd)/(i+1);

};

process = fdelayl(5,1024,5.4); // 5th-order ex.

51

Lagrange Interpolation in Faust, Variable Delay d

With variable delay, it is easiest to work with the plain FIR form,

because the interpolation coefficients can jump around at will along

the delay:

import("music.lib");

fdelayltv(N,n,d,x) = sum(i, N+1, delay(n,id+i,x) * h(N,fd,i))

with {

o = (N-1.00001)/2; // ~center FIR interpolator

dmo = d - o; // assumed >=0 [d > (N-1)/2]

id = int(dmo);

fd = o + frac(dmo);

h(N,d,n) = facs1(N,d,n) * facs2(N,d,n);

facs1(N,d,n) = select2(n,1,prod(k,max(1,n),

select2(k<n,1,fac(d,n,k))));

facs2(N,d,n) = select2(n<N,1,prod(l,max(1,N-n),

fac(d,n,l+n+1)));

fac(d,n,k) = (d-k)/((n-k)+(n==k));

};

process = fdelayltv(5,1024,5.4); // 5th-order ex.

Recall explicit formula for Lagrange interpolation coefficients:

hd(n) =
N
∏

k=0
k 6=n

d− k

n− k
, n = 0, 1, 2, . . . , N

52

http://boytim.orgfree.com/asrc/
http://mathworld.wolfram.com/NewtonsDividedDifferenceInterpolationFormula.html

Summary of Lagrange Interpolators Considered

y(n)

h∆(N)h∆(0)

. . .

h∆(1) h∆(2)

. . .

h∆(N − 1)

x(n) z−1 z−1z−1

Generic FIR

. . .

x̂(n−∆)

x(n) . . .

. . .

∆

CNc−1(z)

∆

CNc−2(z) C0(z)C1(z)

∆

Farrow Structure

. . . yN−1(n) yN(n)

N−1−∆

N
−∆

y1(n) y2(n)

1−∆

2

. . .

. . .

x(n) 1− z−11− z−11− z−1

Truncated Taylor Expansion

53

Thiran Allpass Interpolators

Given a desired delay ∆ = N + δ samples, an order N allpass filter

H(z) =
z−NA

(

z−1
)

A(z)
=

aN + aN−1z
−1 + · · · + a1z

−(N−1) + z−N

1 + a1z−1 + · · · + aN−1z−(N−1) + aNz−N

can be designed having maximally flat group delay equal to ∆ at

DC using the formula

ak = (−1)k
(

N

k

) N
∏

n=0

∆−N + n

∆−N + k + n
, k = 0, 1, 2, . . . , N

where
(

N

k

)

=
N !

k!(N − k)!

denotes the kth binomial coefficient

• a0 = 1 without further scaling

• For sufficiently large ∆, stability is guaranteed

rule of thumb: ∆ ≈ order

• Mean group delay is always N samples

(for any stable N th-order allpass filter):

1

2π

∫ 2π

0

D(ω)dω
∆
= −

1

2π

∫ 2π

0

Θ′(ω)dω = −
1

2π
[Θ(2π)− Θ(0)] = N

• Only known closed-form case for allpass interpolators of arbitrary

order

54

• Effective for delay-line interpolation needed for tuning since

pitch perception is most acute at low frequencies.

Frequency Responses of Thiran Allpass
Interpolators for Fractional Delay

0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5
Thiran Interpolating Filters, Del=Order+0.3, Order=[1,2,3,5,10,20]

G
ro

up
 D

el
ay

 −
 s

am
pl

es

Frequency (radians/sample)

1
2
3
5
10
20

55

Large Delay Changes

When implementing large delay-length changes (by many samples), a

useful implementation is to cross-fade from the initial delay line

configuration to the new configuration.

• Computation doubled during cross-fade

• Cross-fade should be slow enough to sound smooth

• Not a true “morph” from one delay length to another, since we

do not pass through the intermediate delay lengths

• A single delay line can be shared such that the cross-fade occurs

from one read-pointer (plus interpolation filtering) to another

• Typically used with a cross-correlator that looks for good

cross-fade delays (where cross-correlation is maximized)

– Used in Synchronous OverLap Add (SOLA) methods for

Time Scale Modification (TSM) and Frequency Scaling

– Used (originally?) by the Eventide Harmonizer

(Frequency Scaling)

– Can alternatively do a power cross-fade5 (instead of the

usual amplitude cross-fade) where the cross-correlation is at

a minimum in magnitude6

5https://ccrma.stanford.edu/~jos/sasp/Panning_Problem.html
6pointed out in an email from Robert Bristow-Johnson received 2019-08-16

56

https://ccrma.stanford.edu/~jos/sasp/Panning_Problem.html

L-Infinity (Chebyshev) Fractional Delay Filters

• Use Linear Programming (LP) for real-valued L∞-norm

minimization

• Remez exchange algorithm:

firpm (formerly remez): real FIR design

cfirpm (formerly cremez): complex FIR design

• In the complex case, we have a problem known as a

Quadratically Constrained Quadratic Program

• Approximated by sets of linear constraints

(e.g., a polygon can be used to approximate a circle)

• Can solve with cvx code developed by Prof. Boyd’s group

• See Mohonk-97 paper7 for details.

7http://ccrma.stanford.edu/~jos/resample/optfir.pdf

57

Chebyshev FD-FIR Design Example

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
7

7.2

7.4

7.6

Normalized Frequency

gr
ou

p
de

la
y

−
sa

m
pl

es

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Am
pl

itu
de

Fractional delay min−max filters

58

0 5 10 15 20 25 30
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Modulus of the Error − (infinity norm)

• Equal-ripple in passband

• Must tabulate FIR coefficients for each ∆

• Such tables interpolate well when ∆ densely sampled

59

Comparison of Lagrange and Optimal
Chebyshev Fractional-Delay Filter

Frequency Responses

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
7

7.2

7.4

7.6

Normalized Frequency

gr
ou

p
de

la
y

−
 s

am
pl

es

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

A
m

pl
itu

de

Comparison between min−maxs and Lagrange − L=16

60

http://ccrma.stanford.edu/~jos/resample/optfir.pdf

Interpolation Summary

Well Known Closed-Form Solutions

Order

1 N Large N ∞

FIR Linear Lagrange Windowed Sinc

IIR Allpass1 Thiran Sinc

Tabulated Alternative (Order N)

Design a digital filter (FIR or IIR) that approximates

H∆

(

ejωT
)

= e−jω∆T , ∆ = Desired delay in samples

optimally in some sense, with coefficients tabulated over a range of

∆ samples (and interpolated on lookup).

61

