Simple Interpolators suitable for Real Time Fractional Delay Filtering

Linear Interpolation

Simplest of all, and the most commonly used:

\[\hat{y}(n - \eta) = (1 - \eta) \cdot y(n) + \eta \cdot y(n - 1) \]

where \(\eta \) = desired fractional delay.

One-multiply form:

\[\hat{y}(n - \eta) = y(n) + \eta \cdot [y(n - 1) - y(n)] \]

- Works best with lowpass signals
 (Natural spectra tend to roll off rapidly)
- Works well with over-sampling

Examples

Half-sample delay:

\[\hat{y} \left(n - \frac{1}{2} \right) = \frac{1}{2} \cdot y(n) + \frac{1}{2} \cdot y \left(n - \frac{1}{2} \right) \]

Quarter-sample delay:

\[\hat{y} \left(n - \frac{1}{4} \right) = \frac{3}{4} \cdot y(n) + \frac{1}{4} \cdot y(n - 1) \]
Frequency Responses of Linear Interpolation for Delays between 0 and 1

![Graph showing frequency responses for linear interpolation](image)

Linear Interpolation as a Convolution

- Equivalent to filtering the continuous-time weighted impulse train

\[\sum_{n=-\infty}^{\infty} y(nT) \delta(t - nT) \]

with the continuous-time “triangular pulse” FIR filter

\[h_d(t) = \begin{cases} 1 - |t/T|, & |t| \leq T \\ 0, & \text{otherwise} \end{cases} \]

followed by sampling at the desired phase

Discrete-Time Approximation

\[x(n) \xrightarrow{\downarrow M} \sum \xrightarrow{z^{-1}} \downarrow M \xrightarrow{s(n - \frac{L}{M})} \]

- Replacing \(h_d(t) \) by \(h_s(t) = \text{sinc}(\frac{t}{T}) \) converts linear interpolation to ideal bandlimited interpolation (see “sinc interpolation” below)

First-Order Allpass Interpolation

\[
\hat{x}(n - \Delta) = y(n) = \eta \cdot x(n) + x(n - 1) - \eta \cdot y(n - 1)
\]

\[H(z) = \frac{\eta + z^{-1}}{1 + \eta z^{-1}} \]

- Low frequency delay given by

\[\Delta \approx \frac{1 - \eta}{1 + \eta} \quad \text{exact at DC} \]

- Same complexity as linear interpolation

- Good for delay-line interpolation, not random access

- Best used with fixed fractional delay \(\Delta \)

- To avoid pole near \(z = -1 \), offset delay range, e.g.,

\[\Delta \in [0.1, 1.1] \leftrightarrow \eta \in [-0.05, 0.82] \]

- Change delay slowly compared to \(\tau \approx T/(1 - \eta_{\text{max}}) \)

Intuitively, ramping the coefficients of the allpass gradually “grows” or “hides” one sample of delay. This tells us how to handle resets when crossing sample boundaries (sufficiently slowly).

Phase Delays of First-Order Allpass Interpolators for Various Desired Delays

![Graph showing phase delays for first-order allpass interpolation](image)
Interpolation Overview

Well Known Closed-Form Solutions

<table>
<thead>
<tr>
<th>Order</th>
<th>FIR</th>
<th>IIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Linear</td>
<td>Allpass<sub>1</sub></td>
</tr>
<tr>
<td>Large <sub>N</sub></td>
<td>Lagrange</td>
<td>Thiran</td>
</tr>
<tr>
<td>∞</td>
<td>Windowed Sinc</td>
<td>Sinc</td>
</tr>
</tbody>
</table>

Tabulated Alternative (Order _N)

Design a digital filter (FIR or IIR) that approximates

\[H_\Delta(e^{j\omega T}) = e^{-j\omega \Delta T}, \quad \Delta = \text{Desired delay in samples optimally in some sense, with coefficients tabulated over a range including } \Delta \text{ samples (and interpolated on lookup).} \]

Itinerary Below

- Ideal Bandlimited (Sinc) Interpolation
- Windowed Sinc Interpolation (still perceptually ideal up to some band edge)
- Lagrange FIR (polynomial) Interpolation
- Thiran IIR Interpolation

The Sinc Function (“Cardinal Sine”)

\[\text{sinc}(t) \triangleq \begin{cases} \frac{\sin(\pi t)}{\pi t}, & t \neq 0 \\ 1, & t = 0 \end{cases} \]

Sinc Function

The sinc function is the impulse response of the ideal lowpass filter which cuts off at half the sampling rate

Applications of Bandlimited Interpolation

Bandlimited Interpolation is used in (e.g.)

- Sampling-rate conversion
- Oversampling D/A converters
- Wavetable/sampling synthesis
- Virtual analog synthesis
- Fractional delay filtering

Fractional delay filtering is a special case of bandlimited interpolation:

- Fractional delay filters only need sequential access \(\Rightarrow\) IIR filters can be used
- General bandlimited-interpolation requires random access \(\Rightarrow\) FIR filters normally used

Fractional Delay Filters are used for (among other things)

- Time-varying delay lines (flanging, chorus, leslie)
- Tuning digital waveguide models to correct pitch
- Exact tonehole placement in woodwind models
- Beam steering of microphone / speaker arrays
Ideal D/A Conversion

Each sample in the time domain scales and locates one sinc function in the unique, continuous, bandlimited interpolation of the sampled signal.

Convolving a sampled signal \(y(n) \) with sinc\((n - \eta)\) "evaluates" the signal at an arbitrary continuous time \(\eta \in \mathbb{R} \):

\[
y(\eta) = \sum_{n=-\infty}^{\infty} y(n) \text{sinc}(\eta - n)
\]

Proof: Sampling Theorem

Ideal D/A Conversion

Ideal D/A Example

Reconstruction of a bandlimited rectangular pulse \(x(t) \) from its samples \(x = [\ldots, 0, 1, 1, 1, 1, 0, \ldots] \):

\[
\text{Bandlimited Rectangular Pulse Reconstruction from its Samples}
\]

Catch

- Sinc function is infinitely long and noncausal
- Must be available in continuous form

Optimal Least Squares Bandlimited Interpolation

Formulated as a Fractional Delay Filter

Note that BL interpolation is a special case of linear filtering. (Proof: Convolution representation above.)

Consider a filter which delays its input by \(\Delta \) samples:

- Ideal impulse response = bandlimited delayed impulse = delayed sinc
 \[
h_{\Delta}(t) = \text{sinc}(t - \Delta) \triangleq \frac{\sin[\pi(t - \Delta)]}{\pi(t - \Delta)}
\]
- Ideal frequency response = "brick wall" lowpass response, cutting off at \(f_s/2 \) and having linear phase \(e^{-j\omega \Delta T} \)

\[
H_{\Delta}(\omega) \triangleq \text{FT}(h_{\Delta}) = \begin{cases} e^{-j\omega \Delta}, & |\omega| < \pi f_s \\ 0, & |\omega| \geq \pi f_s \end{cases}
\]

\[
\rightarrow H_{\Delta}(e^{j\omega T}) = e^{-j\omega \Delta T}, \quad -\pi \leq \omega T < \pi
\]

\[
\leftrightarrow \text{sinc}(n - \Delta), \quad n = 0, \pm 1, \pm 2, \ldots \quad \text{after critically sampling in the time domain.}
\]

The sinc function is an infinite-impulse-response (IIR) digital filter with no recursive form \(\Rightarrow \) non-realizable.

To obtain a finite impulse response (FIR) interpolating filter, let’s formulate a least-squares filter-design problem:

Desired Interpolator Frequency Response

\[
H_{\Delta}(e^{j\omega T}) = e^{-j\omega \Delta T}, \quad \Delta = \text{Desired delay in samples}
\]

FIR Frequency Response, Zero-Phase Alignment

\[
\hat{H}_{\Delta}(e^{j\omega T}) = \sum_{n=-L-1}^{L-1} \hat{h}_{\Delta}(n) e^{-j\omega n T}
\]

Error to Minimize

\[
E(e^{j\omega T}) = H_{\Delta}(e^{j\omega T}) - \hat{H}_{\Delta}(e^{j\omega T})
\]

L\(^2\) Error Norm

\[
J(h) \triangleq \| E \|^2 = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} |E(e^{j\omega T})|^2 d\omega
\]

By Parseval’s Theorem

\[
J(h) = \sum_{n=0}^{\infty} |h_{\Delta}(n) - \hat{h}_{\Delta}(n)|^2
\]

Optimal Least-Squares FIR Interpolator

\[
\hat{h}_{\Delta}(n) = \begin{cases} \text{sinc}(n - \Delta), & \frac{L-1}{2} \leq n \leq \frac{L-1}{2} \\ 0, & \text{otherwise} \end{cases}
\]
Truncated-Sinc Interpolation

Truncate sinc(t) at 5th zero-crossing to left and right of time 0 to get the following amplitude response:

Frequency Response : Rectangular Window

- Vertical axis in dB, horizontal axis in spectral samples
- Optimal in least-squares sense
- Poor stop-band rejection (≈ 20 dB)
- “Gibbs Phenomenon” gives too much “ripple”
- Ripple can be reduced by tapering the sinc function to zero instead of simply truncating it

Windowed Sinc Interpolation

- Sinc function can be windowed more generally to yield

\[
\hat{h}_\Delta(n) = \begin{cases}
 w(n - \Delta)\text{sinc}[\alpha(n - \Delta)], & 0 \leq n \leq L - 1 \\
 0, & \text{otherwise}
\end{cases}
\]

- Example of window method for FIR lowpass filter design applied to sinc functions (ideal lowpass filters) sampled at various phases (corresponding to desired delay between samples)
- For best results, $\Delta \approx L/2$ (causal length L window)
- $w(n)$ is any real symmetric window (e.g., Hamming, Blackman, Kaiser)
- Non-rectangular windows taper truncation which reduces Gibbs phenomenon, as in FFT analysis
- $\alpha < 1$ provides for a nonzero transition band

Spectrum of Kaiser-windowed Sinc

- Stopband now starts out close to -80 dB
- Kaiser window has a single parameter which trades off stop-band attenuation versus transition-bandwidth from pass-band to stop-band

Lowpass Filter Design

- In the transition band, frequency response “rolls off” from 1 at $\omega_c = \alpha \omega_s / 2$ to zero (or ≈ 0.5) at $\omega_s / 2$
- Interpolation can be “perfect” in pass-band

Online references (FIR interpolator design)

- Music 421 Lecture 2 on Windows
- Music 421 Lecture 3 on FIR Digital Filter Design
- Optimal FIR Interpolator Design

http://ccrma.stanford.edu/~jos/Windows/
http://ccrma.stanford.edu/~jos/WinFlt/
Oversampling Reduces Filter Length

- Example 1:
 - \(f_s = 44.1 \text{ kHz} \) (CD quality)
 - Audio upper limit = 20 kHz
 - Transition band = 2.05 kHz
 - FIR filter length \(\Delta L_1 \)

- Example 2:
 - \(f_s = 48 \text{ kHz} \) (e.g., DAT)
 - Audio upper limit = 20 kHz
 - Transition band = 4 kHz
 - FIR filter length \(\approx L_1/2 \)

- Required FIR filter length varies inversely with transition bandwidth
 \Rightarrow \text{Required filter length in example 1 is almost } double \ (\approx 4/2.1) \text{ the required filter length for example 2}

- Increasing the sampling rate by less than ten percent reduces the filter expense by almost fifty percent in this example

The Digital Audio Resampling Home Page

- C++ software for windowed-sinc interpolation
- C++ software for FIR filter design by window method
- Fixed-point data and filter coefficients
- Can be adapted to time-varying resampling
- Open source, free
- First written in 1983 in SAIL
- Interesting comparisons of various audio interpolators out there: http://src.infinitewave.ca/
- Most needed upgrade:
 - Design and install a set of optimal FIR interpolating filters.

Interpolator Types

<table>
<thead>
<tr>
<th>Order</th>
<th>1</th>
<th>(N)</th>
<th>Large (N)</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIR</td>
<td>Linear</td>
<td>Lagrange</td>
<td>Windowed Sinc</td>
<td></td>
</tr>
<tr>
<td>IIR</td>
<td>Allpass, Thiran</td>
<td>Sinc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lagrange Interpolation

- Lagrange interpolation is just polynomial interpolation
- \(N \)th-order polynomial interpolates \(N + 1 \) points
- First-order case = linear interpolation

Problem Formulation

Given a set of \(N + 1 \) known samples \(f(x_k) \), \(k = 0, 1, 2, \ldots, N \), find the unique order \(N \) polynomial \(y(x) \) which interpolates the samples

Solution (Waring, Lagrange):

\[
y(x) = \sum_{k=0}^{N} l_k(x)f(x_k)
\]

where

\[
l_k(x) \triangleq \frac{(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_N)}{(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_N)}
\]

- Numerator gives a zero at all samples but the \(k \)th
- Denominator simply normalizes \(l_k(x) \) to 1 at \(x = x_k \)
• As a result,
 \[l_k(x_j) = \delta_{kj} \]

• Generalized bandlimited impulse = generalized sinc function:
 Each \(l_k(x) \) goes through 1 at \(x = x_k \) and zero at all other sample points
 i.e., \(l_k(x) \) is analogous to \(\text{sinc}(x - x_k) \)

• For uniformly spaced samples, Lagrange interpolation converges to sinc interpolation as \(N \to \infty \)

• For uniformly spaced samples and finite \(N \), Lagrange interpolation is equivalent to windowed sinc interpolation using a binomial window
 (see text for refs)

Lagrange Interpolation Optimality

In the uniformly sampled case, Lagrange interpolation can be viewed as an FIR filter with coefficients that depend on the fractional part of the “interpolation time” (sample times on the integers)

• Lagrange interpolation filters are maximally flat in the frequency domain about dc:
 \[
 \left. \frac{d^m E(e^{j\omega})}{d\omega^m} \right|_{\omega=0} = 0, \quad m = 0, 1, 2, \ldots, N,
 \]
 (1st \(N + 1 \) terms of Taylor expansion about \(\omega = 0 \) zeroed), where
 \[
 E(e^{j\omega}) = e^{-j\Delta} - \sum_{n=0}^{N} h_n e^{-jn\Delta}
 \]
 and \(\Delta \) is the desired delay in samples
 (see text for proof)

• Same optimality criterion as Butterworth filters in classical analog filter design

• Can also be viewed as “Padé approximation” to a constant frequency response

• Also bounded by 1 in the frequency domain:
 \[
 |H(e^{j\omega})| \leq 1, \quad \forall \omega \in [-\pi, \pi]
 \]

Order 4 Amplitude Response Over a Range of Fractional Delays

\[\Delta = 1.5:0.1:2.5 \]

Order 4 Phase Delay Over a Range of Fractional Delays

\[\Delta = 1.5:0.1:2.5 \text{ plus 2.499} \]

• Requested delay 2.5 veers off to 3 samples at \(f_s/2 \)

• Requested delay 2.499 swings down to 2 samples at \(f_s/2 \) like the other delay curves

• Preferable to use modulated delays converging to the same integer at \(f_s/2 \) (possible over a one-sample modulation range)
Order 5 Amplitude Response Over a Range of Fractional Delays

\[\Delta = 2.0:0.1:3.0 \text{ plus } 2.495 \text{ and } 2.505 \]

Order 5 Phase Delay Over a Range of Fractional Delays

\[\Delta = 2.0:0.1:3.0 \text{ plus } 2.495 \text{ and } 2.505 \]

- Notice sudden jump to an integer delay at \(f_s/2 \) for curves near delay 2.5 samples
 - Phase delay for 2.495 samples swings down to 2
 - Phase delay for 2.505 samples swings up to 3
- Phase delay for 2.5 samples can be considered exact (gain=0 at \(f_s/2 \))

Explicit Formula for Lagrange Interpolation Coefficients

\[
h_\Delta(n) = \prod_{k=0 \atop k \neq n}^{N} \frac{\Delta - k}{n - k}, \quad n = 0, 1, \ldots, N
\]

Lagrange Interpolation Coefficients

<table>
<thead>
<tr>
<th>(N)</th>
<th>(h_\Delta(0))</th>
<th>(h_\Delta(1))</th>
<th>(h_\Delta(2))</th>
<th>(h_\Delta(3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1 - \Delta)</td>
<td>(\Delta)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(\frac{-(\Delta - 2)}{2(\Delta - 1)})</td>
<td>(-\Delta(\Delta - 2))</td>
<td>(\frac{\Delta(\Delta - 1)}{2})</td>
<td>(\Delta(\Delta - 1)(\Delta - 2))</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{-(\Delta - 2)(\Delta - 3)}{2(\Delta - 1)(\Delta - 2)})</td>
<td>(\frac{2(\Delta - 3)(\Delta - 2)}{2(\Delta - 1)(\Delta - 2)})</td>
<td>(\frac{\Delta(\Delta - 1)(\Delta - 2)}{2})</td>
<td>(\Delta(\Delta - 1)(\Delta - 2))</td>
</tr>
</tbody>
</table>

- For \(N = 1 \), Lagrange interpolation reduces to linear interpolation \(h = [1 - \Delta, \Delta] \), as before
- For order \(N \), desired delay should be in a one-sample range centered about \(\Delta = N/2 \)

Matlab Code For Lagrange Fractional Delay

```matlab
function h = lagrange(N, delay)
    n = 0:N;
    h = ones(1,N+1);
    for k = 0:N
        index = find(n ~= k);
        h(index) = h(index) * (delay-k)./(n(index)-k);
    end
end
```

n = 0:N;
h = ones(1,N+1);
for k = 0:N
 index = find(n ~= k);
 h(index) = h(index) * (delay-k)./(n(index)-k);
end
Faust Code For Lagrange Fractional Delay

For an intro to Faust, see, e.g.,

http://ccrma.stanford.edu/~jos/spf/

// Fourth-order case - delay d should be at least 1.5

fdelay4(n,d,x) =
 delay(n,id,x) * fdm1*fdm2*fdm3*fdm4/24
 + delay(n,id+1,x) * (0-fd*fdm2*fdm3*fdm4)/6
 + delay(n,id+2,x) * fd*fdm1*fdm3*fdm4/4
 + delay(n,id+3,x) * (0-fd*fdm1*fdm2*fdm4)/6
 + delay(n,id+4,x) * fd*fdm1*fdm2*fdm3/24

with {
 o = 1.49999;
 dmo = d - o; // assumed nonnegative
 id = int(dmo);
 fd = o + frac(dmo);
 fdm1 = fd-1;
 fdm2 = fd-2;
 fdm3 = fd-3;
 fdm4 = fd-4;
}

Faust-Generated C++ Code

Inner-loop function generated by Faust:

```cpp
virtual void
compute (int count, float** input, float** output) {
  float* output0 = output[0];
  for (int i=0; i<count; i++) {
    iVec0[0] = 1;
    iRec0[0] = ((1 + iRec0[1]) & 15);
    ftbl0[iRec0[0]] = (1 - iVec0[1]);
    output0[i] =
      (((0.468750f * ftbl0[((iRec0[0] - 1) & 15)])
       + (2.343750e-02f * ftbl0[((iRec0[0] - 4) & 15)])
       + (0.703125f * ftbl0[((iRec0[0] - 2) & 15)])
       - ((0.156250f * ftbl0[((iRec0[0] - 3) & 15)])
       + (3.906250e-02f * ftbl0[((iRec0[0] & 15)]) ));
    // post processing
    iRec0[1] = iRec0[0];
    iVec0[1] = iVec0[0];
  }
}
```

Test Program (Faust 0.9.9.3 or later):

```cpp
import("filter.lib");
N = 16;
impulse = 1-1';
process = impulse : fdelay4(N,1.5);
```

Faust Test Program for Generating Above Frequency-Response Examples

```cpp
import("filter.lib"); % Faust v0.9.9.3 or later
N = 16; % Allocated delay-line length
D = 5.4; % Requested delay
process = impulse <: (
  fdelay4(N, 1.5),
  fdelay4(N, 1.6),
  fdelay4(N, 1.7),
  ...
  fdelay4(N, 2.4),
  fdelay4(N, 2.499),
  fdelay4(N, 2.5));

// To see amplitude responses (for example):
// [in a shell]:
// faust2octave tlagrange.dsp
// [at the Octave command prompt]:
// plot(db(fft(faustout,1024)(1:512,:)));

// Alternate example for testing a range of orders
// process = 1-1' <: (fdelay1(N,D),
//  fdelay2(N,D),
//  fdelay3(N,D),
//  fdelay4(N,D),
//  fdelay5(N,D));
```

Relation of Lagrange Interpolation to Windowed Sinc Interpolation

• For an infinite number of equally spaced samples, with spacing \(x_{k+1} - x_k = \Delta \), the Lagrange-interpolation basis polynomials converge to shifts of the sinc function, i.e.,

\[
l_k(x) = \text{sinc} \left(\frac{x - k\Delta}{\Delta} \right), \quad k = \ldots, -2, -1, 0, 1, 2, \ldots
\]

Proof: As order \(\to \infty \), the binomial window \(\to \) Gaussian window \(\to \) constant (unity).

Alternate Proof: Every analytic function is determined by its zeros and its value at one nonzero point. Since sinc\((x)\) is zero on all the integers except 0, and since sinc\((0)\) = 1, it therefore coincides with the Lagrangian basis polynomial for \(N = \infty \) and \(k = 0 \).
Variable FIR Interpolating Filter

Basic idea: Each FIR filter coefficient h_n becomes a polynomial in the delay parameter Δ:

$$h_{\Delta}(n) \triangleq \sum_{m=0}^{P} c_m(m)\Delta^m, \quad n = 0, 1, 2, \ldots, N$$

$$\Leftrightarrow H_{\Delta}(z) \triangleq \sum_{n=0}^{N} h_{\Delta}(n)z^{-n}$$

$$= \sum_{n=0}^{N} \left[\sum_{m=0}^{P} c_m(m)\Delta^m \right] z^{-n}$$

$$= \sum_{m=0}^{P} \left[\sum_{n=0}^{N} c_m(m)z^{-n} \right] \Delta^m$$

$$\Leftrightarrow \sum_{m=0}^{P} C_m(z)\Delta^m$$

- More generally: $H_{\Delta}(x) = \sum_m \alpha(\Delta)C_m(z)$ where $\alpha(\Delta)$ is provided by a table lookup
- Basic idea applies to any one-parameter filter variation
- Also applies to time-varying filters ($\Delta \leftrightarrow t$)

37

Farrow Interpolation Features

- The Farrow structure computes Nth-order Lagrange interpolation using $O(N^2)$ multiplies and adds
- This is the same complexity as plain FIR filtering using the closed-form coefficient formulas above
- However, the Farrow structure is more convenient for variable-delay applications because it is a linear combination of N fixed FIR filters $C_k(z)$,
 $k = 1, \ldots, N$, with linear combination coefficients given by Δ^k, computed recursively, where Δ is the desired delay:

$$\hat{x}(n-\Delta) = x(n) + \Delta \cdot [(c_1 \cdot x)(n) + \Delta \cdot (c_2 \cdot x)(n) + \cdots]$$

- The next section describes a formulation achieving complexity $O(N)$

38

Farrow Structure for Variable Delay FIR Filters

Evaluate polynomial in Δ using Horner’s rule:

$$\hat{X}_{n-\Delta}(z) = X + \Delta [C_1X + \Delta [C_2X + \cdots + \Delta [C_3X + \cdots]]],$$

\Rightarrow filter structure becomes

As delay Δ varies, “basis filters” $C_k(z)$ remain fixed
\Rightarrow very convenient for changing Δ over time

Farrow Structure Design Procedure

Solve the N_Δ equations

$$z^{-\Delta_i} = \sum_{k=0}^{N} C_k(z)\Delta_i^k, \quad i = 1, 2, \ldots, N_\Delta$$

for the $N + 1$ FIR transfer functions $C_k(z)$, each order N_C in general

References: Laakso et al., Farrow

Lagrange Interpolation by Taylor Expansion

The transfer function of a Δ-sample delay is

$$H_{\Delta}(z) = z^{-\Delta}$$

- Nth-order Lagrange interpolation approximates $H_{\Delta}(z)$ with a length $N + 1$ FIR filter

$$\hat{H}_{\Delta}(z) = h_{\Delta}(0) + h_{\Delta}(1)z^{-1} + \cdots + h_{\Delta}(N)z^{-N}$$

- We know Lagrange interpolation is maximally flat about dc
- Maximally flat means using all degrees of freedom

$\{h_{\Delta}(n)\}_{n=0}^{N}$ to zero leading terms in the Taylor series expansion of the frequency-response error

$$E(z) = H_{\Delta}(z) - \hat{H}_{\Delta}(z)$$

about dc ($z = 1$)
- This means matching the first $N + 1$ terms of the Taylor expansion of $H_{\Delta}(z) = z^{-\Delta}$ about $z = 1$
Taylor Series Expansion of $z^{-\Delta} \doteq q^\Delta$

To obtain a causal FIR filter, we will expand $H_\Delta(z)$ in powers of z^{-1} instead of z. For simplicity of notation, define $q = z^{-1}$. Then we obtain the Taylor series expansion of $H_\Delta(q^{-1}) = q^\Delta$ about $q = 1$ to be

$$
H_\Delta(q^{-1}) = H_\Delta(1) + H'_\Delta(1)(q-1) + \frac{1}{2!} H''_\Delta(1)(q-1)^2 + \frac{1}{3!} H'''_\Delta(1)(q-1)^3 + \cdots
$$

$$
= 1 + \Delta q^{-1} + \frac{1}{2!} \Delta(\Delta - 1) q^{-2} + \frac{1}{3!} \Delta(\Delta - 1)(\Delta - 2) q^{-3} + \cdots
$$

where the derivatives are with respect to $q = z^{-1}$, e.g., $H'_\Delta(q) \doteq \frac{d}{dq} q^\Delta = \Delta q^{\Delta-1}$. Our maximally flat Nth-order Lagrange FIR interpolation filter is obtained by truncating this expansion at order N:

$$
H_\Delta(q^{-1}) \doteq 1 + \Delta(q-1) + \frac{1}{2!} \Delta(\Delta - 1)(q-1)^2 + \frac{1}{3!} \Delta(\Delta - 1)(\Delta - 2)(q-1)^3 + \cdots + \frac{1}{N!} \prod_{k=0}^{N-1} (\Delta - k) (q-1)^N
$$

where

$$
h_\Delta(n) \doteq \frac{1}{n!} \prod_{k=0}^{N-1} (\Delta - k) = \frac{\Delta(\Delta - 1)(\Delta - 2) \cdots (\Delta - n + 1)}{n!}
$$

This can be viewed as an FIR filter structure in which the usual delay elements are replaced by $q-1 = z^{-1} - 1$.

Efficient Time-Invariant Lagrange Interpolation

We derived the following efficient implementation:

```
+-----------------+-----------------+-----------------+
|                |                |                |
|      x(n)      |      Δ         |      Δ-1       |
| q-1            | q-1            | q-1            |
| y0(n)          |  y1(n)         |  y2(n)         |
| y2(n)          |  y3(n)         |                 |
|                 |                |                |
```

Replacing q by z^{-1} and manipulating signs gives the following:

```
+-----------------+-----------------+-----------------+
|                |                |                |
|      x(n)      |      1-z^-1    |      1-z^-1    |
| q-1            | q-1            | q-1            |
| y0(n)          |  y1(n)         |  y2(n)         |
| y2(n)          |  y3(n)         |                 |
|                 |                |                |
```

- Note that Lagrange interpolators of all orders 1, 2, \ldots, N are available at the summer outputs. The signal $y_k(n)$ is the kth-order Lagrange-interpolation approximation of $x(n-\Delta)$.
- Note that this recursive implementation is only valid for constant Δ since the first-order differences “remember” past values of Δ.

Recursive Term Computation

Our Lagrange interpolation filter is again

$$
H_\Delta(q^{-1}) = \sum_{n=0}^{N} h_\Delta(n)(q-1)^n
$$

where the coefficients of $(q-1)^n = (z^{-1} - 1)^n$ are again

$$
h_\Delta(n) \doteq \frac{\Delta(\Delta - 1)(\Delta - 2) \cdots (\Delta - n + 1)}{n!}
$$

Note that we can recursively compute the terms in the sum from left to right:

$$
h_\Delta(n) = h_\Delta(n-1) \cdot \frac{\Delta - n + 1}{n} (q-1)^n
$$

Thus, we can crank out the terms in series and sum the intermediate signals:

```
+-----------------+-----------------+-----------------+
|                |                |                |
|      x(n)      |      Δ         |      Δ-1       |
| q-1            | q-1            | q-1            |
| y0(n)          |  y1(n)         |  y2(n)         |
| y2(n)          |  y3(n)         |                 |
|                 |                |                |
```

Time-Varying Lagrange Interpolation

To allow for time-varying Δ, the coefficients $h_\Delta(k)$ can be moved out of the $(q-1)^k$ chain as follows:

```
+-----------------+-----------------+-----------------+
|                |                |                |
|      x(n)      |      1-z^-1    |      1-z^-1    |
| q-1            | q-1            | q-1            |
| y0(n)          |  y1(n)         |  y2(n)         |
| y2(n)          |  y3(n)         |                 |
|                 |                |                |
```

- In this case the lower-order interpolations are not readily available.
- As in the Farrow structure, we obtain a variable linear combination of fixed FIR filters $(1 - z^{-1})^k$, $k = 0, 1, 2, \ldots N$.

41
42
43
44
A More Elegant Derivation

Define the backwards difference operator \(\delta \) by

\[
\delta f(n) \triangleq f(n) - f(n+1)
\]

and the factorial polynomials (aka rising factorials or Pochhammer symbol) by

\[
x^{[N]} \triangleq x(x+1)(x+2) \ldots (x+N-2)(x+N-1)
\]

These give a discrete-time counterpart to \(\frac{d}{dx}x^{N} = Nx^{N-1} \), viz.,

\[
\delta x^{[N]} = N x^{[N-1]}
\]

In these terms, a discrete-time Taylor series about \(n = k \) can be defined:

\[
\hat{f}(t) \triangleq \sum_{n=0}^{\infty} \left[\delta^n f(k) \right] \frac{(t-k)^n}{n!}
\]

- Known as “Newton’s Backward Difference Formula”
- Truncating this expansion at \(n = N \) again yields \(N \)th-order Lagrange interpolation on uniformly spaced samples

\(N \)th-order Lagrange interpolation via truncated discrete-time Taylor series expansion about time \(n = k \):

\[
\hat{f}(t) \triangleq \sum_{n=0}^{N} \left[\delta^n f(k) \right] \frac{(t-k)^n}{n!}
\]

Each term in the expansion can be computed recursively from the previous term:

\[
\left[\delta^n f(k) \right] \frac{(t-k)^n}{n!} = \left[\delta^{n-1} f(k) \right] \frac{(t-k)^{n-1}}{(n-1)!} \times \frac{t-k+N-1}{N} \cdot [\delta f(k)]
\]

This gives the same efficient computational form found previously:

\[
x(n) \quad 1 - z^{-1} \quad \Delta \quad 1 - z^{-1} \quad \Delta \quad \cdots \quad 1 - z^{-1} \quad \Delta \quad 1 - z^{-1} \quad \Delta \quad y_{0}(n) \quad y_{1}(n) \quad \cdots \quad y_{N-1}(n) \quad y_{N}(n)
\]

where \(\Delta \triangleq k - t \) is the desired delay for fractional-delay filtering, and \(y_{k}(n) \) is the output signal for \(k \)th-order Lagrange interpolation (modular!). See also Newton’s divided difference interpolation formula.

Features of Truncated-Taylor Lagrange-Interpolation

- Computational Complexity = \(3N - 1 \) multiplies and \(3N - 2 \) additions for \(N \)th-order interpolation
- If multiplication factors for a given delay \(\Delta = k - t \) are stored in memory, then the complexity reduces to \(N \) multiplies and \(2N - 2 \) adds per output sample (multiplies comparable to a plain FIR interpolator, but additions are \(\approx \) doubled)
- Interpolation order can be increased or decreased by modularly adding/deleting sections on the right

References

- http://home.comcast.net/~matt.boytim/aescort
- http://mathworld.wolfram.com/NewtonsDividedDifferenceInterpolationFormula.html
Lagrange Interpolation in Faust, Fixed Delay d

Fast time-invariant-delay algorithm `fdelaylti` — derived by truncated Taylor series expansion above — in Faust’s `filter.lib`

Code

```faust
import("music.lib");

fdelaylti(N,n,d,x) = delay(n,id,x) <: seq(i,N,section(i)) : !,_
with {
  o = (N-1.00001)/2; // ~center FIR interpolator
  dmo = d - o; // assumed >=0 [d > (N-1)/2]
  id = int(dmo);
  fd = o + frac(dmo);
  section(i,x,y) = (x-x') * c(i) <: _,+(y);
  c(i) = (i - fd)/(i+1);
};
```

```faust
process = fdelaylti(5,1024,5.4); // 5th-order ex.
```

Summary of Lagrange Interpolators Considered

<table>
<thead>
<tr>
<th>$x(n)$</th>
<th>$h_{\Delta}(0)$</th>
<th>$h_{\Delta}(1)$</th>
<th>...</th>
<th>$h_{\Delta}(N-1)$</th>
<th>$h_{\Delta}(N)$</th>
<th>z^{-1}</th>
<th>$y(n)$</th>
</tr>
</thead>
</table>

Generic FIR

<table>
<thead>
<tr>
<th>$x(n)$</th>
<th>$C_0(z)$</th>
<th>$C_{N-1}(z)$</th>
<th>...</th>
<th>$C_{N-1}(z)$</th>
<th>$C_0(z)$</th>
<th>$z\cdot\Delta$</th>
<th>$i(n-\Delta)$</th>
</tr>
</thead>
</table>

Farrow Structure

<table>
<thead>
<tr>
<th>$x(n)$</th>
<th>$1-z^{-1}$</th>
<th>$\frac{1}{2\Delta}$</th>
<th>$\frac{1}{2\Delta}$</th>
<th>$\frac{2z-1}{\Delta}$</th>
<th>z^{-1}</th>
<th>$y_0(n)$</th>
<th>$y_0(n)$</th>
</tr>
</thead>
</table>

Truncated Taylor Expansion

| $x(n)$ | $1-z^{-1}$ | $\frac{1}{2\Delta}$ | $\frac{1}{2\Delta}$ | $\frac{2z-1}{\Delta}$ | z^{-1} | $y_{0\cdot\Delta}(n)$ | $y_{0\cdot\Delta}(n)$ |

Lagrange Interpolation in Faust, Variable Delay d

With variable delay, it is easiest to work with the plain FIR form, because the interpolation coefficients can jump around at will along the delay:

Code

```faust
import("music.lib");

fdelayltv(N,n,d,x) = sum(i, N+1, delay(n,id+i,x) * h(N,fd,i))
with {
  o = (N-1.00001)/2; // ~center FIR interpolator
  dmo = d - o; // assumed >=0 [d > (N-1)/2]
  id = int(dmo);
  fd = o + frac(dmo);
  h(N,d,n) = facs1(N,d,n) * facs2(N,d,n);
  facs1(N,d,n) = select2(n,1,prod(k,max(1,n)
    select2(k<n,1,fac(d,n,k)));
  facs2(N,d,n) = select2(n<N,1,prod(l,max(1,N-n),
    fac(d,n,l+n+1)));
  h(N,d,n) = facs1(N,d,n) * facs2(N,d,n);
};
```

```faust
process = fdelayltv(5,1024,5.4); // 5th-order ex.
```

Recall explicit formula for Lagrange interpolation coefficients:

$$h_d(n) = \prod_{k=0}^{N} \frac{d - k}{n - k}, \quad n = 0, 1, 2, \ldots, N$$

Thiran Allpass Interpolators

Given a desired delay $\Delta = N + \delta$ samples, an order N allpass filter

$$H(z) = \frac{z^{-N}A(\frac{z}{z})}{A(z)} = a_N + a_{N-1}z^{-1} + \cdots + a_1z^{-(N-1)} + z^{-N}$$

can be designed having maximally flat group delay equal to Δ at DC using the formula

$$a_k = (-1)^k \binom{N}{k} \prod_{n=0}^{N} \frac{\Delta - n + k}{\Delta - N + k + n}, \quad k = 0, 1, 2, \ldots, N$$

where

$$\binom{N}{k} = \frac{N!}{k!(N-k)!}$$

denotes the kth **binomial coefficient**

- $a_0 = 1$ without further scaling
- For sufficiently large Δ, stability is guaranteed rule of thumb: $\Delta \approx$ order
- Mean group delay is always N samples (for any stable Nth-order allpass filter):

$$\frac{1}{2\pi} \int_0^{2\pi} D(\omega)d\omega = -\frac{1}{2\pi} \int_0^{2\pi} \Theta(\omega)d\omega = -\frac{1}{2\pi} (\Theta(2\pi) - \Theta(0)) = N$$
- Only known closed-form case for allpass interpolators of arbitrary order
• Effective for delay-line interpolation needed for tuning since pitch perception is most acute at low frequencies.

Frequency Responses of Thiran Allpass Interpolators for Fractional Delay

When implementing large delay-length changes (by many samples), a useful implementation is to *cross-fade* from the initial delay line configuration to the new configuration.

- Computation doubled during cross-fade
- Cross-fade should be long enough to sound smooth
- Not a true "morph" from one delay length to another, since we do not pass through the intermediate delay lengths.
- A single delay line can be *shared* such that the cross-fade occurs from one *read-pointer* (plus associated filtering) to another.

L-Infinity (Chebyshev) Fractional Delay Filters

- Use Linear Programming (LP) for real-valued L_{∞}-norm minimization
- Remez exchange algorithm:
 - firpm (formerly remez): real FIR design
 - cfirpm (formerly cremez): complex FIR design
- In the complex case, we have a problem known as a *Quadratically Constrained Quadratic Program*
- Approximated by sets of linear constraints (e.g., a *polygon* can be used to approximate a *circle*)
- Can solve with *cvx* code developed by Prof. Boyd’s group
- See Mohonk-97 paper for details.

Chebyshev FD-FIR Design Example

56
Interpolation Summary

Well Known Closed-Form Solutions

<table>
<thead>
<tr>
<th>Order</th>
<th>1</th>
<th>Large N</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIR</td>
<td>Linear</td>
<td>Lagrange</td>
<td>Windowed Sinc</td>
</tr>
<tr>
<td>IIR</td>
<td>Allpass</td>
<td>Thiran</td>
<td>Sinc</td>
</tr>
</tbody>
</table>

Tabulated Alternative (Order N)

Design a digital filter (FIR or IIR) that approximates

\[H_\Delta(e^{j\omega T}) = e^{-j\omega \Delta T}, \quad \Delta = \text{Desired delay in samples} \]

optimally in some sense, with coefficients tabulated over a range of \(\Delta \) samples (and interpolated on lookup).