Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Shift Theorem

The Shift operator is defined as $ \hbox{\sc Shift}_{l,n}(y) \mathrel{\stackrel{\Delta}{=}}y(n-l)$ . Since indexing is defined modulo $ N$ , $ \hbox{\sc Shift}_l(y)$ is a circular right-shift by $ l$ samples.

$\displaystyle \zbox{\hbox{\sc Shift}_l(y) \leftrightarrow e^{-j(\cdot)l}Y}
$

or, more loosely,

$\displaystyle \zbox{y(n-l) \leftrightarrow e^{-j\omega l}Y(\omega)}
$

i.e.,

$\displaystyle \hbox{\sc DFT}_k[\hbox{\sc Shift}_l(y)] = \left( e^{-j\omega_k l} \right) Y(\omega_k)
$

$\displaystyle e^{-j\omega_k l} = \hbox{\emph{Linear Phase Term, slope} = $-l$}
$


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``Review of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]