Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Time Reversal



Definition:

$\displaystyle \hbox{\sc Flip}_n( x ) \mathrel{\stackrel{\Delta}{=}}x(-n) \mathrel{\stackrel{\Delta}{=}}x(N-n)
$

Note: $ x(n) \mathrel{\stackrel{\Delta}{=}}x(n \,$mod$ \, N ) $ for signals in $ \mathbb{C}^N$ (DFT case).

When computing a sampled DTFT using the DFT, we interpret time indices $ n=1,2,\ldots,N/2-1$ as positive time indices, and $ n=N-1,N-2,\ldots,N/2$ as the negative time indices $ n=-1,-2,\ldots,-N/2$ . Under this interpretation, the $ \hbox{\sc Flip}$ operator simply reverses a signal in time.

Fourier theorems:

$\displaystyle \zbox{\hbox{\sc Flip}(x) \leftrightarrow \hbox{\sc Flip}(X)}
$

for $ x \in \mathbb{C}^N $ . In the typical special case of real signals ( $ x\in\mathbb{R}^N$ ), we have $ \hbox{\sc Flip}(X)=\overline{X}$ so that

$\displaystyle \zbox{\hbox{\sc Flip}(x) \leftrightarrow \overline{X}}
$

Time-reversing a real signal conjugates its spectrum


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``Review of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]