next up previous
Next: MDKC and MDWD Network Up: The (2+1)D Parallel-plate System Previous: The (2+1)D Parallel-plate System

Phase and Group Velocity

For the constant-coefficient, lossless and source-free case (i.e., $ r=g=e=f=h=0$), the numerical dispersion relation, in terms of the frequency $ \omega$ and wavenumber magnitude $ \Vert$$ \beta$$ \Vert _{2} = \sqrt{\beta_{x}^{2}+\beta_{y}^{2}}$ will be, from (3.10),

$\displaystyle \omega\left(\omega^{2}-\frac{1}{lc}\Vert\mbox{\boldmath$\beta$}\Vert _{2}^{2}\right) = 0$    

which has roots

$\displaystyle \omega = 0\hspace{1.0in}\omega = \pm\sqrt{\frac{1}{lc}}\Vert$$\displaystyle \mbox{\boldmath$\beta$}$$\displaystyle \Vert _{2}$    

Discounting the stationary mode with $ \omega = 0$, the phase and group velocities are then, from (3.12),

$\displaystyle \gamma^{p}_{PP} = \gamma_{PP}^{g} = \pm\frac{1}{\sqrt{lc}}$    

and if $ l$ and $ c$ are functions of $ x$ and $ y$, the maximal group velocity will be

$\displaystyle \gamma_{PP, max}^{g} = \frac{1}{\sqrt{(lc)_{min}}}$ (3.64)

where $ (lc)_{min} = \min_{(x,y)\in\mathcal{D}}(lc)$. This bound is the same as for the (1+1)D transmission line equations.

Figure 3.17: MDKC for the (2+1)D parallel-plate system in rectangular coordinates.

\begin{picture}(490,200)
\par\put(0,0){\epsfig{file = /user/b/bilbao/WDF/latex/M...
...mall {$L_{3}= v_{0}r_{0}^{2}c-2r_{0}$} \end{center}\end{minipage}}
\end{picture}


next up previous
Next: MDKC and MDWD Network Up: The (2+1)D Parallel-plate System Previous: The (2+1)D Parallel-plate System
Stefan Bilbao 2002-01-22