Getting back to acyclic convolution, we may write it as
Since is time limited to (or ), can be sampled at intervals of without time aliasing. If is time-limited to , then will be time limited to . Therefore, we may sample at intervals of
(9.22) |
We conclude that practical FFT acyclic convolution may be carried out using an FFT of any length satisfying
(9.23) |
where is the length DFT of the zero-padded frame , and is the length DFT of , also zero-padded out to length , with .
Note that the terms in the outer sum overlap when even if . In general, an LTI filtering by increases the amount of overlap among the frames.
This completes our derivation of FFT convolution between an indefinitely long signal and a reasonably short FIR filter (short enough that its zero-padded DFT can be practically computed using one FFT).
The fast-convolution processor we have derived is a special case of the Overlap-Add (OLA) method for short-time Fourier analysis, modification, and resynthesis. See [7,9] for more details.