Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Reflection Coefficient, Series Case

The velocity reflection coefficient seen at port $ i$ is defined as

$\displaystyle \rho^v_i \isdef \left. \frac{v^{-}_i(n)}{v^{+}_i(n)} \right\vert _{v^{+}_j(n)=0, \forall j\neq i} \protect$ (F.38)

Representing the outgoing velocity wave $ v^{-}_i(n)$ as the superposition of the reflected wave $ \rho^v_iv^{+}_i(n)$ plus the $ N-1$ transmitted waves from the other ports, we have

$\displaystyle v^{-}_i(n) = \rho^v_i v^{+}_i + \sum_{j\neq i} \tau^v_{ji} v^{+}_j \protect$ (F.39)

where $ \tau^v_{ji}$ denotes the velocity transmission coefficient from port $ j$ to port $ i$ . Substituting Eq.(F.36) into Eq.(F.37) yields

\begin{eqnarray*}
v^{-}_i(n) &=& v_J(n) - v^{+}_i(n)\\
&=& \left(\sum_{j=1}^N \beta_j v^{+}_j(n)\right) - v^{+}_i(n)\\
&=& (\beta_i - 1)v^{+}_i(n) + \sum_{j\neq i} \beta_j v^{+}_j(n)
\end{eqnarray*}

Equating like terms with Eq.(F.39) gives

$\displaystyle \rho^v_i$ $\displaystyle =$ $\displaystyle \beta_i - 1
\protect$ (F.40)
$\displaystyle \tau^v_{ji}$ $\displaystyle =$ $\displaystyle \beta_j, \quad (i\neq j)$ (F.41)

Thus, the $ j$ th beta parameter is the velocity transmission coefficient from $ j$ th port to any other port (besides the $ i$ th). To convert the transmission coefficient from the $ i$ th port to the reflection coefficient for that port, we simply subtract 1. These relationships are specific to velocity waves at a series junction (cf. Eq.(F.19)). They are exactly the dual of Equations (F.19-F.20) for force waves at a parallel junction.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Physical Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2010, ISBN 978-0-9745607-2-4
Copyright © 2024-06-28 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA