Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Probability Distribution



Definition: A probability distribution $ \hat{p}(x)$ may be defined as a non-negative real function of all possible outcomes of some random event. The sum of the probabilities of all possible outcomes is defined as 1, and probabilities can never be negative.



Example: A coin toss has two outcomes, ``heads'' (H) or ``tails'' (T), which are equally likely if the coin is ``fair''. In this case, the probability distribution is

$\displaystyle \hat{p}(H) = \hat{p}(T) = \frac{1}{2}$ (C.1)

where $ \hat{p}(x)$ denotes the probability of outcome $ x$ . That is, the total ``probability mass'' is divided equally between the two possible outcomes heads or tails. This is an example of a discrete probability distribution because all probability is assigned to two discrete points, as opposed to some continuum of possibilities.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]
[Lecture Video]  [Exercises]  [Examination]  
``Spectral Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2011, ISBN 978-0-9745607-3-1.
Copyright © 2014-03-23 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA