Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Independent Events

Two probabilistic events $ H_1$ and $ H_2$ are said to be independent if the probability of $ H_1$ and $ H_2$ occurring together equals the product of the probabilities of $ H_1$ and $ H_2$ individually, i.e.,

$\displaystyle \hat{p}(H_1 H_2) = \hat{p}(H_1)(H_2)$ (C.2)

where $ \hat{p}(H_1 H_2)$ denotes the probability of $ H_1$ and $ H_2$ occurring together.



Example: Successive coin tosses are normally independent. Therefore, the probability of getting heads twice in a row is given by

$\displaystyle \hat{p}(H H) = \hat{p}(H)\hat{p}(H) = \frac{1}{2}\cdot\frac{1}{2} = \frac{1}{4}.$ (C.3)


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]
[Lecture Video]  [Exercises]  [Examination]  
``Spectral Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2011, ISBN 978-0-9745607-3-1.
Copyright © 2014-03-23 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA