Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Well Posed PDEs for Modeling Damped Strings

A large class of well posed PDEs is given by [43]

$\displaystyle {\ddot y} + 2\sum_{k=0}^M q_k \frac{\partial^{2k+1}y}{\partial x^{2k}\partial t} + \sum_{k=0}^N r_k\frac{\partial^{2k}y}{\partial x^{2k}} \protect$ (G.30)

Thus, to the ideal string wave equation Eq. (G.1) we add any number of even-order partial derivatives in $ x$, plus any number of mixed odd-order partial derivatives in $ x$ and $ t$, where differentiation with respect to $ t$ occurs only once. Because every member of this class of PDEs is only second-order in time, it is guaranteed to be well posed, as shown in §L.2.2.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]