Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


A Physical Derivation of Wave Digital Elements

This section provides a ``physical'' derivation of Wave Digital Filters (WDF), which contrasts somewhat with the more formal derivation common in the literature. The derivation is presented as a numbered series of steps (some with rather long discussions):

  1. To each element, such as a capacitor or inductor, attach a length of waveguide (electrical transmission line) having wave impedance $ R_0$, and make it infinitesimally long. (Take the limit as its length goes to zero.) A schematic depiction of this is shown in Fig. N.1a. For consistency, all signals are Laplace transforms of their respective time-domain signals. The length must approach zero in order not to introduce propagation delays into the signal path.

    Figure N.1: a) Physical schematic for the derivation of a wave digital model of driving-point impedance $ R(s)$. The inserted waveguide impedance $ R_0$ is real and positive, but otherwise arbitrary. b) Expanded view of the interior of the infinitesimal waveguide section, also representing the termination impedance $ R(s)$ as an impedance-step within the waveguide.
    \begin{figure}\input fig/wdelt.pstex_t
\end{figure}

    Points to note:



Subsections
Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]