Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Reflectances of Elementary Impedances


Capacitor Reflectance.

For a capacitor of $ C$ Farads, the driving-point impedance is (see §J.1.3)

$\displaystyle R_C(s)=\frac{1}{Cs}
$

(or $ k/s$ for a spring with constant $ k$). Substituting into Eq. (N.1) gives the reflectance

$\displaystyle S_C(s) = \frac{R_C(s)-R_0}{R_C(s)+R_0} = \frac{1 - R_0 C s}{1 + R_0 C s} \protect$ (N.5)


Inductor Reflectance.

For an inductor of $ L$ Henrys, we have

$\displaystyle R_L(s)$ $\displaystyle =$ $\displaystyle Ls$  
$\displaystyle \,\,\implies\,\,S_L(s)$ $\displaystyle =$ $\displaystyle \frac{Ls-R_0}{Ls+R_0} = \frac{ s - R_0/L }{ s + R_0/L}
\protect$ (N.6)


Resistor Reflectance.

Finally, for a resistor of $ R$ Ohms, we get

$\displaystyle S_R(s) = \frac{R-R_0}{R+R_0} = \frac{1 - R_0/R }{ 1 + R_0/R } \protect$ (N.7)

Note that both the capacitor and inductor reflectances are stable allpass filters, as they must be. Also, the resistor reflectance is always less than 1, no matter what waveguide impedance $ R_0>0$ we choose.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]