Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Kinetic Energy of a Mass

From Newton's second law, $ f=ma=m{\ddot x}$ (introduced in Eq. (E.1)), we can derive the formula for the kinetic energy of a mass given its speed $ v={\dot x}$. Let $ d x$ denote a small (infinitesimal) displacement of the mass in the $ x$ direction. Then we have, using the calculus of differentials,

\begin{eqnarray*}
f(t) &=& m\, {\ddot x}\\
\,\,\implies\,\,\quad d W\isdef f(t)...
...c{1}{2}{\dot x}^2\right)\\
&=& d\left(\frac{1}{2}m\,v^2\right).
\end{eqnarray*}

Thus, by Newton's second law, a differential of work $ dW$ applied to a mass $ m$ by force $ f$ through distance $ d x$ boosts the kinetic energy of the mass by $ d(m\,v^2/2)=m\,v\,dv=ma\,dx$. Therefore, we must have

$\displaystyle E_m(t) = \frac{1}{2}m v^2(t) = \frac{1}{2}{\dot x}^2(t),
$

where $ E_m(t)$ denotes the kinetic energy of the mass $ m$ traveling at speed $ v(t)$ at time $ t$.

The quantity $ dW=f\,dx$ is classically called the virtual work associated with force $ f$, and $ d x$ a virtual displacement [521].


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]