Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Newton's Laws of Motion

Perhaps the most heavily used equation in physics is Newton's second law of motion:

$\displaystyle \zbox {\mbox{\emph{Force = Mass $\times$\ Acceleration}}}
$

That is, when a force is applied to a mass, the mass experiences an acceleration proportional to the applied force. Denoting the mass by $ m$, force at time $ t$ by $ f(t)$, and acceleration by

$\displaystyle a(t)\isdef {\ddot x}(t) \isdef \frac{d^2 x(t)}{dt^2},
$

we have

$\displaystyle \zbox {f(t) = m\,a(t) = m\,{\ddot x}(t).} \protect$ (E.1)

In this formulation, the applied force $ f(t)$ is considered positive in the direction of positive mass-position $ x(t)$. The force $ f(t)$ and acceleration $ a(t)$ are, in general, vectors in three-dimensional space $ x\in{\bf R}^3$. In other words, force and acceleration are generally vector-valued functions of time $ t$. The mass $ m$ is a scalar quantity, and can be considered a measure of the inertia of the physical system (see §E.1.2).



Subsections
Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]