Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

General Reflectance

Let $ R(s)$ denote a general impedance. Then the wave variable decomposition in (J.7) gives

$\displaystyle F(s)$ $\displaystyle =$ $\displaystyle R(s) V(s)$ (J.13)
$\displaystyle \,\,\implies\,\,F^{+}(s) + F^{-}(s)$ $\displaystyle =$ $\displaystyle R(s) \left[V^{+}(s) + V^{-}(s)\right]$ (J.14)
  $\displaystyle =$ $\displaystyle R(s) \left[\frac{F^{+}(s) - F^{-}(s)}{R_0}\right]$ (J.15)
$\displaystyle \,\,\implies\,\,F^{-}(s) \left[\frac{R(s)}{R_0}+1\right]$ $\displaystyle =$ $\displaystyle F^{+}(s) \left[\frac{R(s)}{R_0}-1\right]$ (J.16)
$\displaystyle \,\,\implies\,\,F^{-}(s)$ $\displaystyle =$ $\displaystyle F^{+}(s) \left[\frac{R(s)-R_0}{R(s)+R_0}\right]$ (J.17)
  $\displaystyle \isdef$ $\displaystyle F^{+}(s) S(s)$ (J.18)

Formally, $ S(s)$ is the reflectance of impedance $ R(s)$ relative to $ R_0$. For example, if a transmission line with characteristic impedance $ R_0$ were terminated in a lumped impedance $ R(s)$, the reflection transfer function at the termination would be $ S(s)$. The interpretation of $ S(s)$ as a reflectance is shown as a wave flow diagram in Fig. J.17c.

Figure J.17: Three different types of diagram for a basic impedance relation: a) Impedance diagram. b) System block diagram. c) Wave flow diagram.
\includegraphics[width=\twidth]{eps/lreflectance}

We are working with reflectance for force waves. Using the elementary relations (J.7), i.e., $ F^{+}(s) = R_0V^{+}(s)$ and $ F^{-}(s) = -R_0V^{-}(s)$, we immediately obtain the corresponding velocity-wave reflectance

$\displaystyle \frac{V^{-}(s)}{V^{+}(s)} = \frac{-F^{-}(s)/R_0}{F^{+}(s)/R_0}
= - \frac{F^{-}(s)}{F^{+}(s)}
= - S(s)
$

Thus, velocity reflectance is simply the negative of force reflectance.
Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]