Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


``Traveling Waves'' in Lumped Systems

One of the topics in classical network theory is the reflection and transmission, or scattering formulation for lumped networks [33]. In this formulation, forces (voltages) and velocities (currents) are replaced by so-called wave variables

\begin{eqnarray*}
f^{{+}}(t) &\isdef & \frac{f(t) + R_0v(t)}{2} \\
f^{{-}}(t) &\isdef & \frac{f(t) - R_0v(t)}{2}
\end{eqnarray*}

where $ R_0$ is an arbitrary reference impedance. Since the above wave variables have dimensions of force, they are specifically force waves. The corresponding velocity waves are

\begin{eqnarray*}
v^{+}(t) &\isdef & \frac{1}{2}[v(t) + f(t)/R_0] \\
v^{-}(t) &\isdef & \frac{1}{2}[v(t) - f(t)/R_0]
\end{eqnarray*}

Dropping the time argument, since it is always `(t)', we see that

\begin{eqnarray*}
f^{{+}}&=& R_0v^{+}\\
f^{{-}}&=& -R_0v^{-}
\end{eqnarray*}

and

\begin{eqnarray*}
f &=& f^{{+}}+ f^{{-}}\\
v &=& v^{+}+ v^{-}
\end{eqnarray*}

These are the basic relations for traveling waves in an ideal medium such as an ideal vibrating string [297]. Replacing force by pressure, we obtain the traveling-wave relations for acoustic tubes [275]. Using voltage and current gives elementary transmission line theory.



Subsections
Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]