Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Air Absorption

This section provides some further details regarding acoustic air absorption [298]. For a plane wave, the decline of acoustic intensity as a function of propagation distance $ x$ is given by

$\displaystyle I(x) = I_0 e^{-x/\xi},
$

where

\begin{eqnarray*}
I_0 &=& \hbox{intensity at the source
(\sref {intensity} def...
...n frequency, temperature, humidity}\\
& & \hbox{and pressure).}
\end{eqnarray*}

Tables E.1 and E.2 (adapted from [294]) give some typical values for air.


Table E.1: Attenuation constant $ m = 1/\xi $ (in inverse meters) at 20 $ {}^{\circ }$C and standard atmospheric pressure
Relative Frequency in Hz
Humidity 1000 2000 3000 4000
40 0.0013 0.0037 0.0069 0.0242
50 0.0013 0.0027 0.0060 0.0207
60 0.0013 0.0027 0.0055 0.0169
70 0.0013 0.0027 0.0050 0.0145



Table E.2: Attenuation in dB per kilometer at 20 $ {}^{\circ }$C and standard atmospheric pressure.
Relative Frequency in Hz
Humidity 1000 2000 3000 4000
40 5.6 16 30 105
50 5.6 12 26 90
60 5.6 12 24 73
70 5.6 12 22 63



Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]