Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Parallel, Real, Second-Order Sections

Figure 3.21 shows the impulse response of the real two-pole section

$\displaystyle H^r_2(z) \isdef H_2(z) + H_3(z) = \frac{0.3788 -0.2413z^{-1}}{1 - 1.4562z^{-1}+
0.8100z^{-2}},
$

and Fig.3.22 shows its frequency response. The frequency axis unnecessarily extends all the way to the sampling rate ($ f_s=1$ ).

Figure 3.21: Impulse response of real two-pole section $ H^r_2(z)$ of the real partial-fraction-expansion of the example filter.
\includegraphics[width=\twidth]{eps/arir2}

Figure 3.22: Frequency response of real two-pole section $ H^r_2(z)$ .
\includegraphics[width=\twidth]{eps/arfr2}

Finally, Fig.3.23 gives the impulse response of the real two-pole section

$\displaystyle H^r_3(z) \isdef H_4(z) + H_5(z) = \frac{0.4555 + 0.0922z^{-1}}{1 + 0.5562z^{-1}+ 0.8100z^{-2}},
$

and Fig.3.24 its frequency response.

Figure 3.23: Impulse response of real two-pole section $ H^r_3(z)$ of the real partial-fraction-expansion of the example filter.
\includegraphics[width=\twidth]{eps/arir3}

Figure 3.24: Frequency response of real two-pole section $ H^r_3(z)$ .
\includegraphics[width=\twidth]{eps/arfr3}


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (September 2007 Edition)
Copyright © 2024-09-03 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA