Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

FIR Transfer Function

The transfer function of an FIR filter is given by the z transform of its impulse response. This is true for any LTI filter, as discussed in Chapter 6. For FIR filters in particular, we have, from Eq.(5.6),

$\displaystyle H(z) \isdef \sum_{n=-\infty}^{\infty} h_n z^{-n} = \sum_{n=0}^M b_n z^{-n} \protect$ (6.8)

Thus, the transfer function of every length $ N=M+1$ FIR filter is an $ M$ th-order polynomial in $ z^{-1}$ .


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (September 2007 Edition)
Copyright © 2024-09-03 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA