Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Series Case

Figure 6.1: Series combination of transfer functions $ H_1(z)$ and $ H_2(z)$ to produce the combined transfer function $ H(z)=H_1(z)H_2(z)$ .
\includegraphics{eps/series}

Figure 6.1 illustrates the series connection of two filters $ H_1(z)=V(z)/X(z)$ and $ H_2(z)=Y(z)/V(z)$ . The output $ v(n)$ from filter 1 is used as the input to filter 2. Therefore, the overall transfer function is

$\displaystyle H(z) \isdefs \frac{Y(z)}{X(z)}
\eqsp \frac{H_2(z)V(z)}{X(z)}
\eqsp H_2(z)H_1(z).
$

In summary, if the output of filter $ H_1(z)$ is given as input to filter $ H_2(z)$ (a series combination), as shown in Fig.6.1, the overall transfer function is $ H(z)=H_1(z)H_2(z)$ --transfer functions of filters connected in series multiply together.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (September 2007 Edition)
Copyright © 2024-09-03 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA