Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Parallel Case

Figure 6.2: Parallel combination of transfer functions $ H_1(z)$ and $ H_2(z)$ , yielding $ H(z)=H_1(z)+H_2(z)$ .
\includegraphics{eps/parallel}

Figure 6.2 illustrates the parallel combination of two filters. The filters $ H_1(z)$ and $ H_2(z)$ are driven by the same input signal $ x(n)$ , and their respective outputs $ y_1(n)$ and $ y_2(n)$ are summed. The transfer function of the parallel combination is therefore

$\displaystyle H(z) \isdefs \frac{Y(z)}{X(z)} \eqsp \frac{Y_1(z) + Y_2(z)}{X(z)}
\eqsp \frac{Y_1(z)}{X(z)} + \frac{Y_2(z)}{X(z)} \isdefs H_1(z)+H_2(z).
$

where we needed only linearity of the z transform to have that $ {\cal Z}\{y_1+y_2\} = {\cal Z}\{y_1\}+{\cal Z}\{y_2\}$ .



Subsections
Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (September 2007 Edition).
Copyright © 2014-03-23 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA