Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


The Continuous-Time Impulse

The continuous-time impulse response was derived above as the inverse-Laplace transform of the transfer function. In this section, we look at how the impulse itself must be defined in the continuous-time case.

An impulse in continuous time may be loosely defined as any ``generalized function'' having ``zero width'' and unit area under it. A simple valid definition is

$\displaystyle \delta(t) \isdef \lim_{\Delta \to 0} \left\{\begin{array}{ll} \frac{1}{\Delta}, & 0\leq t\leq \Delta \\ [5pt] 0, & \hbox{otherwise}. \\ \end{array} \right. \protect$ (E.5)

More generally, an impulse can be defined as the limit of any pulse shape which maintains unit area and approaches zero width at time 0. As a result, the impulse under every definition has the so-called sifting property under integration,

$\displaystyle \int_{-\infty}^\infty f(t) \delta(t) dt = f(0), \protect$ (E.6)

provided $ f(t)$ is continuous at $ t=0$ . This is often taken as the defining property of an impulse, allowing it to be defined in terms of non-vanishing function limits such as

$\displaystyle \delta(t) \isdef \lim_{\Omega\to\infty}\frac{\sin(\Omega t)}{\pi t}.
$

An impulse is not a function in the usual sense, so it is called instead a distribution or generalized function [13,44]. (It is still commonly called a ``delta function'', however, despite the misnomer.)


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (September 2007 Edition)
Copyright © 2023-09-17 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA