Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Implemented Model for Masking Threshold

To produce the masking threshold from the spread function and the masker, we need to know the tonality $t(z)$ and the spreading function $SF(z)$ of the masker. After an idea taken MPEG-1 layer I [2], the following model for masking threshold $M(z)$ is used:

\begin{displaymath}
M(z) = P(z_m) + SF(z-z_m) - k(t(z))z_m - l(t(z))\ {\rm (db)},
\end{displaymath} (14)

where $z_m$ is the frequency in barks for the masker, $z$ is the masked frequency in barks and $P(z_m)$ is the power of the masker in dB. The functions $k(t)$ and $l(t)$ are experimentally found as a linear combinations of constants for pure noise and pure tones:
\begin{displaymath}
k(t) = 0.3t+0.5(1-t),\ {\rm and}
\end{displaymath} (15)


\begin{displaymath}
l(t) = 34t+20(1-t)
\end{displaymath} (16)


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download bosse.pdf

``An Experimental High Fidelity Perceptual Audio Coder'', by Bosse Lincoln<bosse@ccrma.stanford.edu>, (Final Project, Music 420, Winter '97-'98).
Copyright © 2006-01-03 by Bosse Lincoln<bosse@ccrma.stanford.edu>
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]