Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Least-Squares Linear-Phase FIR Filter Design

Let the FIR filter length be $ L+1$ samples, with $ L$ even, and suppose we'll initially design it to be centered about the time origin (``zero-phase''). Then the frequency response is given on our frequency grid $ \omega_k$ by

$\displaystyle H(\omega_k) \eqsp \sum_{n=-L/2}^{L/2} h_n e^{-j\omega_kn}, \; k=0,1,2,\ldots,N-1, \; N\gg L.
$

Enforcing even symmetry in the impulse response, i.e., $ h_n = h_{-n}$ , gives a zero-phase FIR filter which we can later right-shift $ L/2$ samples to make a causal, linear phase filter. In this case, the frequency response reduces to a sum of cosines:

\begin{eqnarray*}
H( \omega_k ) &=& h_0 + 2\sum_{n=1}^{L/2} h_n \cos (\omega_k n), \quad k=0,1,2,\ldots, N-1,
\end{eqnarray*}

or in matrix form:

$\displaystyle \left[ \begin{array}{c}
H(\omega_0) \\ H(\omega_1) \\ \vdots \\ H(\omega_{N-1})
\end{array} \right]
=
\underbrace{\left[ \begin{array}{ccccc}
1 & 2\cos(\omega_0) & \dots & 2\cos[\omega_0(L/2)] \\
1 & 2\cos(\omega_1) & \dots & 2\cos[\omega_1(L/2)] \\
\vdots & & & \\
1 & 2\cos(\omega_{N-1}) & \dots & 2\cos[\omega_{N-1}(L/2)]
\end{array} \right]}_A
\underbrace{\left[ \begin{array}{c}
h_0 \\ h_1 \\ \vdots \\ h_{L/2}
\end{array} \right]}_x
$

Note that Remez exchange algorithms are also based on this formulation internally, but now $ L\ll N$ .


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``The Window Method for FIR Digital Filter Design}'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]