Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Summary of Least Squares Amplitude Estimation

$\displaystyle \zbox{\hat{A}= \frac{1}{N}\mbox{re}\left\{\hbox{\sc DTFT}_{\omega_0 }\left[e^{-j\phi} x\right]\right\}}
$

The optimal least-squares amplitude estimate may be found by the following steps:

  1. Multiply the data $ x(n)$ by $ e^{-j\phi}$ to zero the known phase $ \phi$
  2. Take the DTFT of the $ N$ samples of $ x$ , suitably zero padded, and evaluate it at the known frequency $ \omega_0 $
  3. Discard any imaginary part since it can only contain noise
  4. Divide by $ N$ to obtain a true coefficient of projection onto the sinusoid $ s_{\omega_0 }(n)\isdef e^{j\omega_0 n}$ (Method 3)

Amplitude and Phase Estimation

Multiplying the optimal amplitude estimator by $ e^{j\phi}$ suggests the following generalization for including phase:

$\displaystyle \hat{{\cal A}}= \hat{A}e^{j\hat{\phi}}
= \frac{1}{N}\sum_{n=0}^{N-1} x(n) e^{-j\omega_0 n}
= \frac{1}{N}\hbox{\sc DTFT}_{\omega_0 }(x)
$

That is, $ \hat{{\cal A}}$ is given by the complex coefficient of projection of $ x$ onto the complex sinusoid $ e^{j\omega_0 n}$ at the known frequency $ \omega_0 $ .

Proof by the orthogonality principle (Method 3):

The orthogonality principle for linear least squares estimation states that

$\displaystyle \zbox{\hbox{\emph{the projection error must be orthogonal to the model}.}}
$

\epsfig{file=eps/orthproj.eps}

That is, if $ {\hat x}$ is our optimal signal model (viewed now as an $ N$ -vector in $ \mathbb{R}^N$ ), then we must have

\begin{eqnarray*}
x-{\hat x}&\perp& {\hat x}\\
\Rightarrow\quad
\left<x-{\hat x},{\hat x}\right> &=& 0\\
\Rightarrow\quad \left<x,{\hat x}\right> &=& \left<{\hat x},{\hat x}\right>\\
\Rightarrow\quad \sum_{n=0}^{N-1}x(n) \hat{A}e^{-j(\omega_0 n+\hat{\phi})}&=& N \hat{A}^2 \\
\Rightarrow\quad \hbox{\sc DTFT}_{\omega_0 }(x)&=&
N \frac{\hat{A}^2}{\hat{A}e^{-j\hat{\phi}}} = N \hat{A}e^{j\hat{\phi}}
\end{eqnarray*}

Thus, the complex coefficient of projection of $ x$ onto $ e^{j{\hat \omega}n}$ is given by

$\displaystyle \hat{{\cal A}}= \hat{A}e^{j\hat{\phi}} = \frac{1}{N} \hbox{\sc DTFT}_{\omega_0 }(x)
$

The optimality of $ \hat{{\cal A}}$ in the least squares sense follows from the least-squares optimality of orthogonal projection.

Frequency Estimation

The preceding cases suggest the following sinusoidal frequency estimator:

$\displaystyle \hat{\omega}_0^\ast = \arg\{\max_{\hat{\omega}_0} \left\vert\hbox{\sc DTFT}_{\hat{\omega}_0}(x)\right\vert\}.
$

That is, the sinusoidal frequency estimate is defined as that frequency which maximizes the DTFT magnitude.


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``Lecture 4: Spectrum Analysis of Sinusoids'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]