Next  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Rigidly Terminated Ideal String

\epsfig{file=eps/fterminatedstring.eps,width=6.5in}

Boundary conditions:

$\displaystyle y(t,0) \equiv 0 \qquad y(t,L) \equiv 0 \qquad \hbox{($L = $\ string length)}
$

Expand into Traveling-Wave Components:

\begin{eqnarray*}
y(t,0) &=& y_r(t) + y_l(t) = y^{+}(t/T) + y^{-}(t/T) \\
y(t,L) &=& y_r(t-L/c) + y_l(t+L/c)
\end{eqnarray*}

Solving for outgoing waves gives

\begin{eqnarray*}
y^{+}(n) &=& -y^{-}(n) \\
y^{-}(n+N/2) &=& -y^{+}(n-N/2)
\end{eqnarray*}

$ N\mathrel{\stackrel{\mathrm{\Delta}}{=}}2L/X= $ round-trip propagation time in samples



Subsections
Next  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download SimpleStrings.pdf
Download SimpleStrings_2up.pdf
Download SimpleStrings_4up.pdf

``Elementary Digital Waveguide Models for Vibrating Strings'', by Julius O. Smith III, (From Lecture Overheads, Music 420).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]