Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Algebraic Derivation


\epsfig{file=eps/pise.eps,width=6in}

By inspection:

$\displaystyle F_o(z) = z^{-N} \left\{ F_i(z) + z^{-2M}\left[F_i(z) + z^{-N} H_l(z)F_o(z)\right]\right\}
$

\begin{eqnarray*}
\Rightarrow\quad
H(z) \mathrel{\stackrel{\mathrm{\Delta}}{=}}\frac{F_o(z)}{F_i(z)}
&=& z^{-N} \frac{1+z^{-2M}}{1-z^{-(2M+2N)}H_l(z)}\\ [5pt]
&=& \left(1+z^{-2M}\right)\frac{z^{-N}}{1-z^{-(2M+2N)}H_l(z)}
\end{eqnarray*}

\epsfig{file=eps/pianoSimplifiedISEExtracted.eps,width=6in}


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download SimpleStrings.pdf
Download SimpleStrings_2up.pdf
Download SimpleStrings_4up.pdf

``Elementary Digital Waveguide Models for Vibrating Strings'', by Julius O. Smith III, (From Lecture Overheads, Music 420).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]