Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Inverse DFT

The inverse DFT is given by

$\displaystyle x(t_n)=\sum_{k=0}^{N-1}\frac{\left<x,s_k\right>}{\left\Vert\,s_k\,\right\Vert^2} s_k(t_n) =
\frac{1}{N}\sum_{k=0}^{N-1}X(\omega_k)e^{j\omega_kt_n} \hspace{1cm}
$

It can be interpreted as the superposition of the projections, i.e., the sum of the sinusoidal basis signals weighted by their respective coefficients of projection:

$\displaystyle \zbox{x = \sum_k \frac{\left<x,s_k\right>}{\left\Vert\,s_k\,\right\Vert^2} s_k}
$

The inverse normalized DFT is cleaner:

$\displaystyle \zbox{x = \sum_k \left<x,\tilde{s}_k\right>\tilde{s}_k}
$


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``Review of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]