Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

The Discrete Fourier Transform

The ``$ k$ th bin'' of the Discrete Fourier Transform (DFT) is defined as

\begin{eqnarray*}
X(k) &\mathrel{\stackrel{\Delta}{=}}& \hbox{\sc DFT}_k(x) \mathrel{\stackrel{\Delta}{=}}\left<x,s_k\right> \mathrel{\stackrel{\Delta}{=}}\sum_{n=0}^{N-1}x(t_n)e^{-j\omega_kt_n} \\ [10pt]
s_k(n) & \mathrel{\stackrel{\Delta}{=}}& e^{j\omega_k t_n}; \quad k=0,1,\ldots,N-1 \\ [15pt]
\omega_k &\mathrel{\stackrel{\Delta}{=}}& 2\pi \frac{k}{N}f_s = \frac{2\pi k}{NT} ;
\quad t_n \mathrel{\stackrel{\Delta}{=}}nT
\end{eqnarray*}

The DFT is proportional the coefficients of projection of the signal vector $ x$ onto the $ N$ sinusoidal basis signals $ s_k$ , $ k=0,1,\ldots,N-1$ :

$\displaystyle \zbox{X(k) = \left<x,s_k\right>}
$

The normalized DFT is precisely the coefficients of projection of the signal vector $ x$ onto the $ N$ normalized sinusoidal basis signals $ \tilde{s}_k=s_k/\Vert s_k\Vert=s_k/\sqrt{N}$ :

$\displaystyle \zbox{\tilde{X}(k) = \left<x,\tilde{s}_k\right>}
$



Subsections
Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``Review of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]