Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Time Varying Modifications

In FFT convolution using the STFT, the filter can be changed each frame ($ h\to h_m$ ):

Using $ H_m$ in our OLA formulation with a hop size $ R=1$ results in:

\begin{eqnarray*}
y(n) &=& \sum_{m=-\infty}^\infty y_m(n)\\
&=& \sum_{m=-\infty}^\infty {1\over N}\sum_{k=0}^{N-1} X_m(\omega_k) H_m(\omega_k) e^{j\omega_kn} \\
&=& \sum_{m=-\infty}^\infty {1\over N}\sum_{k=0}^{N-1}
\left[ \sum_{l=-\infty}^\infty x(l) w(l-m)e^{-j\omega_kl} \right]
H_m(\omega_k) e^{j\omega_kn} \\
&=& \sum_{l=-\infty}^\infty x(l) \sum_{m=-\infty}^\infty w(l-m)
\frac{1}{N}\sum_{k=0}^{N-1} H_m(\omega_k)
e^{j\omega_k(n-l)} \\
&=& \sum_{l=-\infty}^\infty x(l)
\sum_{m=-\infty}^\infty w(l-m) h_m(n-l) \\
\end{eqnarray*}

Letting $ r \mathrel{\stackrel{\Delta}{=}}n-l \Rightarrow l = n-r$ results in:

$\displaystyle y(n) = \sum_{r=-\infty}^\infty x(n-r) \sum_{m=-\infty}^\infty h_m(r) w( n-r-m )
$

Let's examine $ \displaystyle\sum_{m=-\infty}^\infty h_m(r) w( n-r-m )$ :

Using this, we get

\begin{eqnarray*}
y(n) &=& \sum_{r=-\infty}^\infty x(n-r) \hat{h}^w_{n-r}(r)
\qquad\mbox{( $=x\ast \hat{h}^w$\ if LTI)}\\
&=& x(n) \hat{h}^w_n(0) \\
& & + x(n-1) \hat{h}^w_{n-1}(1) + x(n-2) \hat{h}^w_{n-2}(2) + \cdots \\
& & + x(n+1) \hat{h}^w_{n+1}(-1) + x(n+2) \hat{h}^w_{n+2}(-2) + \cdots
\end{eqnarray*}

This is a superposition sum for an arbitrary linear, time-varying filter $ \hat{h}^w_{n-r}(r) = [h_{(\cdot)}(r) \ast w](n-r)$ .



Subsections
Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``FFT Signal Processing: The Overlap-Add (OLA) Method for Fourier Analysis, Modification, and Resynthesis'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]