Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

L-One Norm of Derivative Objective

Another way to add a smoothness constraint is to add the $ L_1$ - norm of the derivative to the objective.

$\displaystyle \mathrm{minimize}\quad \delta +\eta \left\Vert \Delta h\right\Vert _1.$

In LP, set up the inequality constraints

$\displaystyle -\tau _{i}\leq \Delta h_{i}\leq \tau _{i}\qquad i=1,\ldots ,L-1,
$

or, in matrix form,

\begin{displaymath}
\left[\begin{array}{c}
-\mathbf{D}\\
\mathbf{D}\end{array} \right]h
-
\left[
\begin{array}{c}
\underline{\tau} \\
\underline{\tau}
\end{array}\right]\le 0.\end{displaymath}

The objective function becomes

$\displaystyle \mathrm{minimize}\quad \delta +\eta \mathbf1^{T}\underline{\tau}.$

$ L_1$ norm of diff(h) added to the objective function ($ \eta=1$ ):

\epsfig{file=eps/print_lone_chebwin_1.eps,width=6in,height=6.5in}

Six times the $ L_1$ norm of diff(h) added to the objective function ($ \eta=6$ ):

\epsfig{file=eps/print_lone_chebwin_2.eps,width=6in,height=6.5in}


Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``Optimal Window Design by Linear Programming'', by Tatsuki Kashitani, (Music 421 Presentation, Music 421).
Copyright © 2020-06-27 by Tatsuki Kashitani
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]