Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Polyphase Haar Example

Let's look at the polyphase representation for this example. Starting with the filter bank and its reconstruction,


\begin{psfrags}\psfrag{x(n)}{\normalsize $x(n)$}\psfrag{x}{\normalsize $x$}\psfrag{(n)}{\normalsize $(n)$}\psfrag{y}{\normalsize $y$}\psfrag{v}{\normalsize $v$}\psfrag{H}{\normalsize $H$}\psfrag{F}{\normalsize $F$}\psfrag{z}{\normalsize $z$}\begin{center}\epsfig{file=eps/cqf.eps,width=6in} \\
\end{center} % was epsfbox
\end{psfrags}
the polyphase decomposition of $ H_0(z)$ is

$\displaystyle H_0(z) = E_0(z^2) + z^{-1}E_1(z^2) = \frac{1}{2}+\frac{1}{2}z^{-1}
$

Thus, $ E_0(z^2)=E_1(z^2)=1/2$ , and therefore

$\displaystyle H_1(z) = 1-H_0(z) = E_0(z)-z^{-1}E_1(z)
$

We may derive polyphase synthesis filters as follows:

\begin{eqnarray*}
{\hat X}(z) &=& \left[F_0(z)H_0(z) + F_1(z)H_1(z)\right] X(z)\\
&=& \left[\left(\frac{1}{2} + \frac{1}{2}z^{-1}\right)H_0(z) + \left(-\frac{1}{2}+\frac{1}{2}z^{-1}\right)H_1(z)\right]\\
&=& \frac{1}{2}\left\{\left[H_0(z)-H_1(z)\right] + z^{-1}\left[H_0(z) + H_1(z)\right]\right\}
\end{eqnarray*}

The polyphase representation of the filter bank and its reconstruction can now be drawn as below:

\epsfig{file=eps/poly2chan.eps}

Notice that the reconstruction filter bank is formally the transpose of the analysis filter bank.

Commuting the downsamplers (by the noble identities), we obtain

\epsfig{file=eps/poly2chanfast.eps}

Since $ E_0(z)=E_1(z)=1/2$ , this is simply the OLA form of an STFT filter bank for $ N=2$ , with $ N=M=R=2$ , and rectangular window $ w=[1/2,1/2]$ . That is, the DFT size, window length, and hop size are all 2, and both the DFT and its inverse are simply sum-and-difference operations.




Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download JFB.pdf
Download JFB_2up.pdf
Download JFB_4up.pdf
[Comment on this page via email]

``Multirate, Polyphase, and Wavelet Filter Banks'', by Julius O. Smith III, Scott Levine, and Harvey Thornburg, (From Lecture Overheads, Music 421).
Copyright © 2020-06-02 by Julius O. Smith III, Scott Levine, and Harvey Thornburg
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]