Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Haar Example

Before we leave this case (amplitude-complementary, two-channel, critically sampled, perfect reconstruction filter banks), let's see what happens when $ H_0(z)$ is the simplest possible lowpass filter having unity dc gain, i.e.,

$\displaystyle H_0(z) = \frac{1}{2} + \frac{1}{2}z^{-1}
$

This case is obtained above by setting $ E_0(z^2)=1/2$ , $ o=1$ , and $ h_0(1)=1/2$ .

The polyphase components of $ H_0(z)$ are clearly

$\displaystyle E_0(z^2)=E_1(z^2)=1/2.
$

Choosing $ H_1(z)=1-H_0(z)$ and choosing $ F_0(z)$ and $ F_1(z)$ for aliasing cancellation, the four filters become

\begin{eqnarray*}
H_0(z) &=& \frac{1}{2} + \frac{1}{2}z^{-1} = E_0(z^2)+z^{-1}E_1(z^2)\\ [0.1in]
H_1(z) &=& = 1-H_0(z) = \frac{1}{2} - \frac{1}{2}z^{-1} = E_0(z^2)-z^{-1}E_1(z^2)\\ [0.1in]
F_0(z) &=& H_1(-z) = \frac{1}{2} + \frac{1}{2}z^{-1} = H_0(z)\\ [0.1in]
F_1(z) &=& -H_0(-z) = -\frac{1}{2} + \frac{1}{2}z^{-1} = -H_1(z)
\end{eqnarray*}

Thus, both the analysis and reconstruction filter banks are scalings of the familiar Haar filters (``sum and difference'' filters $ (1\pm z^{-1})/\sqrt{2}$ ).

The frequency responses are

\begin{eqnarray*}
H_0(e^{j\omega}) &=& \quad\,F_0(e^{j\omega}) = \frac{1}{2} + \frac{1}{2}e^{-j\omega}= e^{-j\frac{\omega}{2}} \cos\left(\frac{\omega}{2}\right)\\ [0.1in]
H_1(e^{j\omega}) &=& -F_0(e^{j\omega}) = \frac{1}{2} - \frac{1}{2}e^{-j\omega}= j e^{-j\frac{\omega}{2}} \sin\left(\frac{\omega}{2}\right)
\end{eqnarray*}

which are plotted below:

\epsfig{file=eps/haar.eps,width=5in}


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download JFB.pdf
Download JFB_2up.pdf
Download JFB_4up.pdf
[Comment on this page via email]

``Multirate, Polyphase, and Wavelet Filter Banks'', by Julius O. Smith III, Scott Levine, and Harvey Thornburg, (From Lecture Overheads, Music 421).
Copyright © 2020-06-02 by Julius O. Smith III, Scott Levine, and Harvey Thornburg
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]