Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Example: Random Bit String

Consider a random sequence of 1s and 0s, i.e., the probability of a 0 or 1 is always $ P(0)=P(1)=1/2$ . The corresponding probability density function is

$\displaystyle p_b(x) = \frac{1}{2}\delta(x) + \frac{1}{2}\delta(x-1)
$

and the entropy is

$\displaystyle h(p_b) = \frac{1}{2}$lg$\displaystyle (2) + \frac{1}{2}$lg$\displaystyle (2) =$   lg$\displaystyle (2) = 1
$

Thus, 1 bit is required for each bit of the sequence. In other words, the sequence cannot be compressed. There is no redundancy.

If instead the probability of a 0 is 1/4 and that of a 1 is 3/4, we get

\begin{eqnarray*}
p_b(x) &=& \frac{1}{4}\delta(x) + \frac{3}{4}\delta(x-1)\\
h(p_b) &=& \frac{1}{4}\mbox{lg}(4) + \frac{3}{4}\mbox{lg}\left(\frac{4}{3}\right) = 0.81128\ldots
\end{eqnarray*}

and the sequence can be compressed about $ 19\%$ .

In the degenerate case for which the probability of a 0 is 0 and that of a 1 is 1, we get

\begin{eqnarray*}
p_b(x) &=& \lim_{\epsilon \to0}\left[\epsilon \delta(x) + (1-\epsilon )\delta(x-1)\right]\\
h(p_b) &=& \lim_{\epsilon \to0}\epsilon \cdot\mbox{lg}\left(\frac{1}{\epsilon }\right) + 1\cdot\mbox{lg}(1) = 0
\end{eqnarray*}


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``Gaussian Windows and Transforms'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-06 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]