next up previous
Next: Signal and Coefficient Quantization Up: Adaptors Previous: Adaptors

Scattering Matrices for Adaptors

The adaptor equations for a connection of $ M$ ports, in either the series (2.31) or parallel (2.32) case, may be written as

$\displaystyle {\bf b} = {\bf Sa}$ (2.37)

where $ {\bf b} = [b_{1}, \hdots , b_{M}]^{T}$ and $ {\bf a} = [a_{1}, \hdots , a_{M}]^{T}$, and where we have

$\displaystyle {\bf S}$ $\displaystyle =$   $\displaystyle {\bf I}_{M} -$   $\displaystyle \mbox{\boldmath$\alpha$}$$\displaystyle _{s}{\bf 1}^{T}\hspace{1.0in}$   Series adaptor (voltage waves) (2.38)
$\displaystyle {\bf S}$ $\displaystyle = -$   $\displaystyle {\bf I}_{M} + {\bf 1}$$\displaystyle \mbox{\boldmath$\alpha$}$$\displaystyle _{p}^{T}\hspace{1.0in}$   Parallel adaptor (voltage waves) (2.39)

Here $ {\bf 1}$ is an $ M\times 1$ vector containing all ones, $ {\bf I}_{M}$ is the $ M\times M$ identity matrix, and $ \alpha$$ _{s}$ and $ \alpha$$ _{p}$ are defined by

$\displaystyle \mbox{\boldmath$\alpha$}$$\displaystyle _{s} = \frac{2}{\sum_{j=1}^{M}R_{j}}[R_{1},\hdots,R_{M}]^{T}$   $\displaystyle \mbox{\boldmath$\alpha$}$$\displaystyle _{p} = \frac{2}{\sum_{j=1}^{M}G_{j}}[G_{1},\hdots,G_{M}]^{T}$    

The sum of the elements of either $ \alpha$$ _{s}$ or $ \alpha$$ _{p}$ is 2. For power wave variables, we have a similar relationship,

$\displaystyle \underline{{\bf b}} = \underline{{\bf S}}\,\underline{{\bf a}}$ (2.40)

where

$\displaystyle \underline{{\bf S}}$ $\displaystyle =$   $\displaystyle {\bf I}_{M} - \sqrt{\mbox{\boldmath$\alpha$}_{s}}\sqrt{\mbox{\boldmath$\alpha$}_{s}}^{T}\hspace{1.0in}$   Series adaptor (power-normalized waves)    
$\displaystyle \underline{{\bf S}}$ $\displaystyle = -$   $\displaystyle {\bf I}_{M} + \sqrt{\mbox{\boldmath$\alpha$}_{p}}\sqrt{\mbox{\boldmath$\alpha$}_{p}}^{T}\hspace{1.0in}$   Parallel adaptor (power-normalized waves)    

Here the square root sign indicates an entry-by-entry square root of a vector (all entries of $ \alpha$$ _{s}$ and $ \alpha$$ _{p}$ are non-negative).

Defining the Euclidean norm of a column vector $ {\bf x}$ as $ \Vert{\bf x}\Vert _{2} = \sqrt{{\bf x}^{T}{\bf x}}$, it is easy to show that a power normalized scattering matrix $ \underline{{\bf S}}$ is norm-preserving in either the series or parallel case, i.e., we have

$\displaystyle \Vert\underline{{\bf b}}\Vert _{2} = \Vert\underline{{\bf a}}\Vert _{2}$ (2.41)

For voltage waves, we have the preservation of a weighted $ L_{2}$ norm, i.e.,

$\displaystyle \Vert{\bf b}\Vert _{{\bf P},2} = \Vert{\bf a}\Vert _{{\bf P},2}$ (2.42)

where $ \Vert\cdot\Vert _{{\bf P},2} = \sqrt{(\cdot)^{T}{\bf P}(\cdot)}$; in this case, $ {\bf P}$ is an $ M\times M$ positive definite diagonal matrix simply given by diag $ (G_{1},\hdots,G_{M})$. It should be clear that (2.41) and (2.42) are merely re-statements of power conservation at a memoryless, lossless $ M$-port.

Note that multiplying $ {\bf S}$ or $ \underline{{\bf S}}$ by a vector requires, in either the series of parallel case, $ O(M)$ adds and multiplies; in particular, it is cheaper than a full $ M\times M$ matrix multiply.


next up previous
Next: Signal and Coefficient Quantization Up: Adaptors Previous: Adaptors
Stefan Bilbao 2002-01-22