Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Differentiation Theorem Dual



Theorem: Let $ x(n)$ denote a signal with DTFT $ X(\ejo )$ , and let

$\displaystyle X^\prime(\ejo ) \isdefs \frac{d}{d\omega} X(\ejo )$ (3.40)

denote the derivative of $ X$ with respect to $ \omega$ . Then we have

$\displaystyle \zbox {-jn x(n) \;\longleftrightarrow\;\frac{d}{d\omega}X(\ejo )}
$

where $ X(\ejo )$ denotes the DTFT of $ x(n)$ .



Proof: Using integration by parts, we obtain

\begin{eqnarray*}
\hbox{\sc IDTFT}_{n}(X^\prime)
&\isdef & \frac{1}{2\pi}\int_{-\pi}^\pi X^\prime(\ejo ) e^{j\omega n} d\omega\\
&=& \left. \frac{1}{2\pi}X(\ejo )e^{j\omega t}\right\vert _{-\pi}^{\pi} -
\frac{1}{2\pi}\int_{-\pi}^\pi X(\ejo ) (jn)e^{j\omega n} d\omega\\
&=& -jn x(n).
\end{eqnarray*}

An alternate method of proof is given in §B.3.

Corollary: Perhaps a cleaner statement is as follows:

$\displaystyle \zbox {- n x(n) \;\longleftrightarrow\;\frac{d}{d(j\omega)}X(\ejo )}
$

This completes our coverage of selected DTFT theorems. The next section adds some especially useful FT theorems having no precise counterpart in the DTFT (discrete-time) case.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Spectral Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2011, ISBN 978-0-9745607-3-1.
Copyright © 2022-02-28 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA