Next |
Prev |
Up |
Top
|
Index |
JOS Index |
JOS Pubs |
JOS Home |
Search
The convolution theorem for Fourier transforms states that
convolution in the time domain equals multiplication in the
frequency domain. The continuous-time
convolution of two signals
and
is defined by
|
(B.15) |
The Fourier transform is then
or,
|
(B.16) |
Exercise: Show that
|
(B.17) |
when frequency-domain convolution is defined by
|
(B.18) |
where
is in radians per second, and that
|
(B.19) |
when frequency-domain convolution is defined by
|
(B.20) |
with
in Hertz.
Next |
Prev |
Up |
Top
|
Index |
JOS Index |
JOS Pubs |
JOS Home |
Search
[How to cite this work] [Order a printed hardcopy] [Comment on this page via email]