Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Linear Momentum of the Center of Mass

Consider a system of $ N$ point-masses $ m_i$ , each traveling with vector velocity $ \underline{v}_i$ , and not necessarily rigidly attached to each other. Then the total momentum of the system is

$\displaystyle \underline{p}\eqsp \sum_{i=1}^N m_i \underline{v}_i
\eqsp \sum_{i=1}^N m_i \dot{\underline{x}}_i
\eqsp M \frac{d}{dt} \left(\frac{1}{M}\sum_{i=1}^N m_i \underline{x}_i \right)
\eqsp M \frac{d}{dt} \underline{x}_c
\isdef M \underline{v}_c
$

where $ M=\sum m_i$ denotes the total mass, and $ \underline{v}_c$ is the velocity of the center of mass.

Thus, the momentum $ \underline{p}$ of any collection of masses $ m_i$ (including rigid bodies) equals the total mass $ M$ times the velocity of the center-of-mass.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Physical Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2010, ISBN 978-0-9745607-2-4
Copyright © 2024-06-28 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA