Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Z Transform of Convolution

From the convolution representation, Eq.(5.5), we have that the output $ y$ from a linear time-invariant filter with input $ x$ and impulse response $ h$ is given by the convolution of $ h$ and $ x$ , i.e.,

$\displaystyle y(n) \eqsp (h \ast x)(n) \protect$ (7.3)

where ``$ \ast $ '' means convolution as before. Taking the z transform of both sides of Eq.(6.3) and applying the convolution theorem from the preceding section gives

$\displaystyle Y(z) \eqsp H(z)X(z) \protect$ (7.4)

where H(z) is the z transform of the filter impulse response. We may divide Eq.(6.4) by $ X(z)$ to obtain

$\displaystyle H(z) \eqsp \frac{Y(z)}{X(z)} \;\isdef \; \hbox{transfer function}.
$

This shows that, as a direct result of the convolution theorem, the z transform of an impulse response $ h(n)$ is equal to the transfer function $ H(z)=Y(z)/X(z)$ of the filter, provided the filter is linear and time invariant.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (September 2007 Edition)
Copyright © 2024-09-03 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA