Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Ideal String Wave Equation

For definiteness, let's consider simulating the ideal vibrating string, as shown in Fig. 1.

Figure 1: The ideal vibrating string.
\includegraphics[width=\textwidth]{eps/Fphysicalstring.eps}

The wave equation for the ideal (lossless, linear, flexible) vibrating string depicted in Fig. 1 is given by

$\displaystyle Ky''= \epsilon {\ddot y} \protect$ (1)

where

\begin{displaymath}\begin{array}{rclrcl} K & \isdef & \mbox{string tension} & \q...
...isdef & \frac{\partial}{\partial x}y(t,x) \nonumber \end{array}\end{displaymath}    

and ``$ \isdef $'' means ``is defined as.'' The wave equation is derived, e.g., in [19].



Subsections
Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Download wgfdtd.pdf

``On the Equivalence of the Digital Waveguide and Finite Difference Time Domain Schemes'', by Julius O. Smith III, version published at http://arXiv.org/abs/physics/0407032 (in PDF and PostScript formats only).
Copyright © 2005-12-28 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]