Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

String Slope from Velocity Waves

Let's use the above result to derive the slope of the ideal vibrating string From Eq.(C.11), we have the string displacement given by

$\displaystyle y(t,x) = y_r(t-x/c) + y_l(t+x/c). \protect$

By linearity of differentiation, the string slope is given by

$\displaystyle s(t,x) \isdef \frac{\partial}{\partial x} y(t,x) =
\frac{\partial}{\partial x}y_r(t-x/c)
+ \frac{\partial}{\partial x}y_l(t+x/c).
$

Consider only the right-going component, and define

$\displaystyle {\dot y}_r(\tau) \isdef \frac{d}{d\tau} y_r(\tau)
$

with $ \tau\isdef t-x/c$ . By the chain rule,

$\displaystyle \frac{\partial}{\partial x}y_r(t-x/c)
= \frac{dy_r}{d\tau} \cdot \frac{d\tau}{dx}
= {\dot y}_r(t-x/c)\cdot\left(-\frac{1}{c}\right).
$

The left-going component is similar, but with $ +1/c$ . Thus, the string slope in terms of traveling velocity-wave components can be written as

$\displaystyle s(t,x) = \frac{1}{c}{\dot y}_l(t+x/c) - \frac{1}{c}{\dot y}_r(t-x/c).
$


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Physical Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2010, ISBN 978-0-9745607-2-4
Copyright © 2024-06-28 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA