Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Fourier Transform (FT) and Inverse

The Fourier transform of a signal $ x(t)\in\mathbb{C}$ , $ t\in(-\infty,\infty)$ , is defined as

$\displaystyle X(\omega) \isdef \int_{-\infty}^\infty x(t) e^{-j\omega t} dt, \protect$ (B.1)

and its inverse is given by

$\displaystyle x(t) = \frac{1}{2\pi}\int_{-\infty}^\infty X(\omega) e^{j\omega t} d\omega. \protect$ (B.2)



Subsections
Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Mathematics of the Discrete Fourier Transform (DFT), with Audio Applications --- Second Edition'', by Julius O. Smith III, W3K Publishing, 2007, ISBN 978-0-9745607-4-8
Copyright © 2024-04-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA