Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Physical Perspective on Repeated Poles in Mass-Spring System

In the physical system, dc and infinite frequency are in fact strange cases. In the case of dc, for example, a nonzero constant force implies that the mass $ m$ is under constant acceleration. It is therefore the case that its velocity is linearly growing. Our simulation predicts this, since, using Eq.(F.60) and Eq.(F.59),

\begin{eqnarray*}
v_m(n) &=& \frac{f^{{+}}_m(n)}{m} - \frac{f^{{-}}_m(n)}{m}
= \frac{1}{m} \left[x_2(n+1) + x_2(n)\right] \\
&=& \frac{1}{m} \left[2(n+1) + 2n\right]x_0
= \frac{1}{m} (4 n x_0 + 2 x_0).
\end{eqnarray*}

The dc term $ 2x_0/m$ is therefore accompanied by a linearly growing term $ 2nx_0/m$ in the physical mass velocity. It is therefore unavoidable that we have some means of producing an unbounded, linearly growing output variable.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Physical Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2010, ISBN 978-0-9745607-2-4
Copyright © 2024-06-28 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA