Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Gaussian Characteristic Function

Since the Gaussian PDF is

$\displaystyle p(t) \isdef \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-\mu)^2}{2\sigma^2}}$ (D.50)

and since the Fourier transform of $ p(t)$ is

$\displaystyle P(\omega) = e^{-j\mu \omega} e^{-\frac{1}{2}\sigma^2\omega^2}$ (D.51)

It follows that the Gaussian characteristic function is

$\displaystyle \Phi(\omega) = \overline{P(\omega)} = e^{j\mu \omega} e^{-\frac{1}{2}\sigma^2\omega^2}.$ (D.52)


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Spectral Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2011, ISBN 978-0-9745607-3-1.
Copyright © 2022-02-28 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA